For a ring endomorphism α,we introduce α-skew McCoy rings which are generalizations of α-rigid rings and McCoy rings,and investigate their properties.We show that if α t = I R for some positive integer t and R is ...For a ring endomorphism α,we introduce α-skew McCoy rings which are generalizations of α-rigid rings and McCoy rings,and investigate their properties.We show that if α t = I R for some positive integer t and R is an α-skew McCoy ring,then the skew polynomial ring R[x;α] is α-skew McCoy.We also prove that if α(1) = 1 and R is α-rigid,then R[x;α]/ x 2 is αˉ-skew McCoy.展开更多
基金Supportd by the Natural Science Foundation of Gansu Province (Grant No. 3ZS061-A25-015)the Scientific Research Fund of Gansu Provincial Education Department (Grant No. 06021-21)
文摘For a ring endomorphism α,we introduce α-skew McCoy rings which are generalizations of α-rigid rings and McCoy rings,and investigate their properties.We show that if α t = I R for some positive integer t and R is an α-skew McCoy ring,then the skew polynomial ring R[x;α] is α-skew McCoy.We also prove that if α(1) = 1 and R is α-rigid,then R[x;α]/ x 2 is αˉ-skew McCoy.