In this paper, we introduce Green's .-relations on semirings and define [left, right] adequate semirings to explore additively non-regular semirings. We characterize the semirings which are strong b-lattices of [left...In this paper, we introduce Green's .-relations on semirings and define [left, right] adequate semirings to explore additively non-regular semirings. We characterize the semirings which are strong b-lattices of [left, right] skew-halfrings. Also, as further generalization, the semirings are described which are subdirect products of an additively commutative idempotent semiring and a [left, right] skew-halfring. We extend results of constructions of generalized Clifford semirings (given by M. K. Sen, S. K. MaRy, K. P. Shum, 2005) and the semirings which are subdirect products of a distributive lattice and a ring (given by S. Ghosh, 1999) to additively non-regular semirings.展开更多
基金Supported by the Natural Science Foundation of Hunan Province (Grant No04JJ4001)the Scientific Research Foundation of Hunan Education Department (Grant No05A014)
文摘In this paper, we introduce Green's .-relations on semirings and define [left, right] adequate semirings to explore additively non-regular semirings. We characterize the semirings which are strong b-lattices of [left, right] skew-halfrings. Also, as further generalization, the semirings are described which are subdirect products of an additively commutative idempotent semiring and a [left, right] skew-halfring. We extend results of constructions of generalized Clifford semirings (given by M. K. Sen, S. K. MaRy, K. P. Shum, 2005) and the semirings which are subdirect products of a distributive lattice and a ring (given by S. Ghosh, 1999) to additively non-regular semirings.