<span style="font-family:Verdana;">In this paper, a new method for adding parameters to a well-established distribution to obtain more flexible new families of distributions is applied to the inverse L...<span style="font-family:Verdana;">In this paper, a new method for adding parameters to a well-established distribution to obtain more flexible new families of distributions is applied to the inverse Lomax distribution (IFD). This method is known by the flexible reduced logarithmic-X family of distribution (FRL-X). The proposed distribution can be called a flexible reduced logarithmic-inverse Lomax distribution (FRL-IL). The statistical and reliability properties of the proposed models are studied including moments, order statistics, moment generating function, and quantile function. The estimation of the model parameters by maximum likelihood and the observed information matrix are also discussed. In order to assess the potential of the newly created distribution. The extended model is applied to real data and the results are given and compared to other models.</span>展开更多
文摘<span style="font-family:Verdana;">In this paper, a new method for adding parameters to a well-established distribution to obtain more flexible new families of distributions is applied to the inverse Lomax distribution (IFD). This method is known by the flexible reduced logarithmic-X family of distribution (FRL-X). The proposed distribution can be called a flexible reduced logarithmic-inverse Lomax distribution (FRL-IL). The statistical and reliability properties of the proposed models are studied including moments, order statistics, moment generating function, and quantile function. The estimation of the model parameters by maximum likelihood and the observed information matrix are also discussed. In order to assess the potential of the newly created distribution. The extended model is applied to real data and the results are given and compared to other models.</span>