BACKGROUND Photoaging,a result of chronic sun exposure,leads to skin damage and pigmentation changes.Traditional treatments may have limitations in high-altitude areas like Yunnan Province.Intradermal Col Ⅰ injection...BACKGROUND Photoaging,a result of chronic sun exposure,leads to skin damage and pigmentation changes.Traditional treatments may have limitations in high-altitude areas like Yunnan Province.Intradermal Col Ⅰ injections stimulate collagen production,potentially improving skin quality.This study aims to assess the efficacy and safety of this treatment for photoaging.AIM To evaluate the efficacy and safety of intradermal typeΙcollagen(ColΙ)injection for treating photoaging.METHODS This prospective,self-controlled study investigated the impact of intradermal injections of ColΙon skin photodamage in 20 patients from the Yunnan Province.Total six treatment sessions were conducted every 4 wk±3 d.Before and after each treatment,facial skin characteristics were quantified using a VISIA skin detector.Skin thickness data were assessed using the ultrasound probes of the Dermalab skin detector.The Face-Q scale was used for subjective evaluation of the treatment effect by the patients.RESULTS The skin thickness of the right cheek consistently increased after each treatment session compared with baseline.The skin thickness of the left cheek significantly increased after the third through sixth treatment sessions compared with baseline.The skin thickness of the right zygomatic region increased after the second to sixth treatment sessions,whereas that of the left zygomatic region showed a significant increase after the fourth through sixth treatment sessions.The skin thickness of both temporal regions significantly increased after the fifth and sixth treatment sessions compared with baseline(P<0.05).These findings were also supported by skin ultrasound images.The feature count for the red areas and wrinkle feature count decreased following the treatment(P<0.05).VISIA assessments also revealed a decrease in the red areas after treatment.The Face-QSatisfaction with Facial Appearance Overall and Face-Q-Satisfaction with Skin scores significantly increased after each treatment session.The overall appearance of the patients improved after treatment.CONCLUSION Intradermal ColΙinjection improves photoaging,with higher patient satisfaction and fewer adverse reactions,and could be an effective treatment method for populations residing in high-altitude areas.展开更多
To establish a simple and reliable animal model of skin photo-damage, 20 mice were treated with 8-MOP and exposed to UVA (UVA 320-400 nm) for 24 h. After irradiation, the structure of the epidermis and dermis, colla...To establish a simple and reliable animal model of skin photo-damage, 20 mice were treated with 8-MOP and exposed to UVA (UVA 320-400 nm) for 24 h. After irradiation, the structure of the epidermis and dermis, collagen fibers, elastic fibers were observed by using HE staining and Weigert technique and compared with the normal controls. The acanthosis and epidemis proliferation with accompanying hyperkeratosis and parakeratosis were observed. Inflammatory infiltration was noted in the dermis. The elastic fibers became coarse, irregularly arranged and clustered, with their number increased. The collagen fibers showed obvious degeneration and some amorphous materials could also be observed. The blood vessels were irregularly dilated and vascular walls were thickened, with infiltration of inflammatory cells. It is concluded that murine photodamage model can be quickly, conveniently and reliably established by means of 8-MOP/UVA.展开更多
文摘BACKGROUND Photoaging,a result of chronic sun exposure,leads to skin damage and pigmentation changes.Traditional treatments may have limitations in high-altitude areas like Yunnan Province.Intradermal Col Ⅰ injections stimulate collagen production,potentially improving skin quality.This study aims to assess the efficacy and safety of this treatment for photoaging.AIM To evaluate the efficacy and safety of intradermal typeΙcollagen(ColΙ)injection for treating photoaging.METHODS This prospective,self-controlled study investigated the impact of intradermal injections of ColΙon skin photodamage in 20 patients from the Yunnan Province.Total six treatment sessions were conducted every 4 wk±3 d.Before and after each treatment,facial skin characteristics were quantified using a VISIA skin detector.Skin thickness data were assessed using the ultrasound probes of the Dermalab skin detector.The Face-Q scale was used for subjective evaluation of the treatment effect by the patients.RESULTS The skin thickness of the right cheek consistently increased after each treatment session compared with baseline.The skin thickness of the left cheek significantly increased after the third through sixth treatment sessions compared with baseline.The skin thickness of the right zygomatic region increased after the second to sixth treatment sessions,whereas that of the left zygomatic region showed a significant increase after the fourth through sixth treatment sessions.The skin thickness of both temporal regions significantly increased after the fifth and sixth treatment sessions compared with baseline(P<0.05).These findings were also supported by skin ultrasound images.The feature count for the red areas and wrinkle feature count decreased following the treatment(P<0.05).VISIA assessments also revealed a decrease in the red areas after treatment.The Face-QSatisfaction with Facial Appearance Overall and Face-Q-Satisfaction with Skin scores significantly increased after each treatment session.The overall appearance of the patients improved after treatment.CONCLUSION Intradermal ColΙinjection improves photoaging,with higher patient satisfaction and fewer adverse reactions,and could be an effective treatment method for populations residing in high-altitude areas.
基金a grant from Hubei Province Natural Science Foundation (No.302131041).
文摘To establish a simple and reliable animal model of skin photo-damage, 20 mice were treated with 8-MOP and exposed to UVA (UVA 320-400 nm) for 24 h. After irradiation, the structure of the epidermis and dermis, collagen fibers, elastic fibers were observed by using HE staining and Weigert technique and compared with the normal controls. The acanthosis and epidemis proliferation with accompanying hyperkeratosis and parakeratosis were observed. Inflammatory infiltration was noted in the dermis. The elastic fibers became coarse, irregularly arranged and clustered, with their number increased. The collagen fibers showed obvious degeneration and some amorphous materials could also be observed. The blood vessels were irregularly dilated and vascular walls were thickened, with infiltration of inflammatory cells. It is concluded that murine photodamage model can be quickly, conveniently and reliably established by means of 8-MOP/UVA.