A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical prope...A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical properties of soil with the loading and unloading action during excavation process.The change law of earth pressure of the normal consolidation soil after the foundation pit excavation was analyzed,and elastic displacement calculation methods of analytic solution were further established given the influence of excavation and unloading.According to the change of stress state in the excavation process of foundation pit,the planar mechanical analysis model of the foundation excavation problem was established.By combining this model with the physical equations and geometric equations of plane strain problem with consideration of the loading and unloading modulus of soil,constitutive equation of the plane strain problem was also established.The loading and unloading modulus formula was obtained by using the parameter calculation method in Duncan-Chang curve model.The constitutive equation obtained from the model was used to calculate the soil stress state of each point to determine its loading and unloading modulus.Finally,the foundation pit displacement change after excavation was calculated,and thus the soil pressure distribution after retaining structure deformation.The theoretical results calculated by making corresponding programs were applied to engineering practice.By comparing the conventional calculation results with monitoring results,the practicability and feasibility of the calculation model were verified,which should provide a theoretical basis for similar projects.展开更多
Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein...Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles.展开更多
Perlecan,a heparan sulfate proteoglycan,acts as a mechanical sensor for bone to detect external loading.Deficiency of perlecan increases the risk of osteoporosis in patients with Schwartz-Jampel Syndrome(SJS)and atten...Perlecan,a heparan sulfate proteoglycan,acts as a mechanical sensor for bone to detect external loading.Deficiency of perlecan increases the risk of osteoporosis in patients with Schwartz-Jampel Syndrome(SJS)and attenuates loading4nduced bone formation in perlecan deficient mice(Hypo).Considering that intracellular calcium[Ca2+]i is an ubiquitous messenger controlling numerous cellular processes including mechanotransduction,we hypothesized that perlecan deficiency impairs bone’s calcium signaling in response to loading.To test this,we performed real-time[Ca2+]i imaging on in situ osteocytes of adult murine tibiae under cyclic loading(8 N,Figure 1).Relative to wild type(WT),Hypo osteocytes showed decreases in the overall[Ca2+]i response rate(-58%),calcium peaks(-33%),cells with multiple peaks(-53%),peak magnitude(-6.8%),and recovery speed to baseline(-23%).RNA sequencing and pathway analysis of tibiae from mice subjected to one or seven days of unilateral loading demonstrated that perlecan deficiency significantly suppressed the calcium signaling,ECM-receptor interaction,and focal adhesion pathways following repetitive loading.Defects in the endoplasmic reticulum(ER)calcium cycling regulators such as Ryr1/ryanodine receptors and Atp2a1/Sercal calcium pumps were identified in Hypo bones.Taken together,impaired calcium signaling may contribute to bone’s reduced anabolic response to loading,underlying the osteoporosis risk for the SJS patients.展开更多
By applying the integral transform method and the inverse transformation technique based upon the two types of integration, the present paper has successfully obtained an exact algebraic solution for a two-dimensional...By applying the integral transform method and the inverse transformation technique based upon the two types of integration, the present paper has successfully obtained an exact algebraic solution for a two-dimensional Lamb's problem due to a strip impulse loading for the first time. With the algebraic result, the excitation and propagation processes of stress waves, including the longitudinal wave, the transverse wave, and Rayleigh-wave, are discussed in detail. A few new conclusions have been drawn from currently available integral results or computational results.展开更多
Twist structures have diverse applications, ranging from dragline, electrical cable, and intelligent structure. Among these applications, tension deformation can't be avoided during the fabrication and working proces...Twist structures have diverse applications, ranging from dragline, electrical cable, and intelligent structure. Among these applications, tension deformation can't be avoided during the fabrication and working processes, which often leads to the twist structure rotation (called untwisting effect) and twist pitch increasing. As a consequence, this untwisting behavior has a large effect on the effective Young's modulus. In this paper, we present an improved model based on the classical Costello's theory to predict the effective Young's modulus of the basic structure, twisted by three same copper strands under cyclic loading. Series of experiments were carried out to verify the present model taking into account the untwisting effect. The experimental results have better agreements with the presented model than the common Costello's model.展开更多
Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line...Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.展开更多
Behcet's disease(BD) is a rare and life-long disorder characterized by inflammation of blood vessels throughout the body. BD was originally described in 1937 as a syndrome involving oral and genital ulceration in ...Behcet's disease(BD) is a rare and life-long disorder characterized by inflammation of blood vessels throughout the body. BD was originally described in 1937 as a syndrome involving oral and genital ulceration in addition to ocular inflammation. Intestinal BD refers to colonic ulcerative lesions documented by objective measures in patients with BD. Many studies have shown that over 40% of BD patients have gastrointestinal complaints. Symptoms include abdominal pain, diarrhea, nausea, anorexia and abdominal distension. Although gastrointestinal symptoms are common, the demonstration of gastrointestinal ulcers is rare. This so-called intestinal BD accounts for approximately 1% of cases. There is no specific test for BD, and the diagnosis is based on clinical criteria. The manifestations of intestinal BD are similar to those of other colitis conditions such as Crohn's disease or intestinal tuberculosis, thus, it is challenging for gastroenterologists to accurately diagnose intestinal BD in patients with ileocolonic ulcers. However, giant ulcers distributed in the esophagus and ileocecal junction with gastrointestinal hemorrhage are rare in intestinal BD. Here, we present a case of untypical intestinal BD. The patient had recurrent aphthous ulceration of the oral mucosa, and esophageal and ileo-colonic ulceration, but no typical extra-intestinal symptoms. During examination, the patient had massive acute lower gastrointestinal bleeding. The patient underwent ileostomy after an emergency right hemicolectomy and partial ileectomy, and was subsequently diagnosed with incomplete-type intestinal BD by pathology. The literature on the evaluation and management of this condition is reviewed.展开更多
The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to si...The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to simulate the rails and a lower Euler beam to model the slab. Rail pads between the rails and slab are represented by a continuous layer of springs and dashpots. A series of point loads are formulated to describe the moving train loads. The governing equations of track-ground systems are solved using the double Fourier transform, and the dynamic responses in the time domain are obtained by the inverse Fourier transform. The results show that a train load with high velocity will generate a larger response in transversely isotropic saturated soil than the lower velocity load, and special attention should be paid on the pore pressure in the vicinity of the ground surface. The anisotropic parameters of a surface soil layer will have greater influence on the displacement and excess pore water pressure than those of the subsoil layer. The traditional design method taking ground soil as homogeneous isotropic soil is unsafe for the case of RE 〈 1 and RG 〈 1, so a transversely isotropic foundation model is of great significance to the design for high train velocities.展开更多
Bloom’s taxonomy is widely used in educational research to categorize the cognitive skills required to answer exam questions.For this study,we analyzed how students categorize exam questions(high-level question or lo...Bloom’s taxonomy is widely used in educational research to categorize the cognitive skills required to answer exam questions.For this study,we analyzed how students categorize exam questions(high-level question or low-level question,)gathered data as to their rationale for categorization,and compared their categorizations to those of experts.We found that students consistently rank high-level questions incorrectly.We analyzed student reasons for their categorizations,and found that for many of the incorrectly categorized questions the students referred to reasons related to Cognitive Load Theory.This shows that cognitive load prevents students from accurately assessing the cognitive level of an exam question.Thus,extra cognitive load in exam questions may prevent those questions from accurately measuring the skills and knowledge of the student.This points to the need for instructors to eliminate cognitive load from their exams.展开更多
This paper presents a method to derive the Dyadic Green’s Function(DGF)ofa loaded rectangular waveguide by using the image method.In the calculation of the DGF,we use the integral transformation and replace the multi...This paper presents a method to derive the Dyadic Green’s Function(DGF)ofa loaded rectangular waveguide by using the image method.In the calculation of the DGF,we use the integral transformation and replace the multi-infinite summation by a single one;thus it greatly simplifies the calculation and saves computer time.As an example of the DGF’sapplication,we give the moment method’s scattering field calculation of a metal sphere resting onthe broad wall of the loaded rectangular waveguide.Results of our calculations well agree withboth data of experiments performed in our laboratory and those are published.It is easy to seethat the method used in this paper can be expanded to other related waveguide problems.展开更多
Real-time applications based on Wireless Sensor Network(WSN)tech-nologies are quickly increasing due to intelligent surroundings.Among the most significant resources in the WSN are battery power and security.Clustering...Real-time applications based on Wireless Sensor Network(WSN)tech-nologies are quickly increasing due to intelligent surroundings.Among the most significant resources in the WSN are battery power and security.Clustering stra-tegies improve the power factor and secure the WSN environment.It takes more electricity to forward data in a WSN.Though numerous clustering methods have been developed to provide energy consumption,there is indeed a risk of unequal load balancing,resulting in a decrease in the network’s lifetime due to network inequalities and less security.These possibilities arise due to the cluster head’s limited life span.These cluster heads(CH)are in charge of all activities and con-trol intra-cluster and inter-cluster interactions.The proposed method uses Lifetime centric load balancing mechanisms(LCLBM)and Cluster-based energy optimiza-tion using a mobile sink algorithm(CEOMS).LCLBM emphasizes the selection of CH,system architectures,and optimal distribution of CH.In addition,the LCLBM was added with an assistant cluster head(ACH)for load balancing.Power consumption,communications latency,the frequency of failing nodes,high security,and one-way delay are essential variables to consider while evaluating LCLBM.CEOMS will choose a cluster leader based on the influence of the fol-lowing parameters on the energy balance of WSNs.According to simulatedfind-ings,the suggested LCLBM-CEOMS method increases cluster head selection self-adaptability,improves the network’s lifetime,decreases data latency,and bal-ances network capacity.展开更多
The aim of this note is to study the effect of negative Poisson’s ratio on the quasi-static deformation of a poroelastic half-space with anisotropic permeability and compressible fluid and solid constituents by surfa...The aim of this note is to study the effect of negative Poisson’s ratio on the quasi-static deformation of a poroelastic half-space with anisotropic permeability and compressible fluid and solid constituents by surface loads. Two particular cases considered are: two-dimensional normal strip loading and axisymmetric normal disc loading. It is found that a negative Poisson’s ratio makes the Mandel-Cryer effect more prominent. It also results in an increase in the magnitude of the surface settlement.展开更多
Rechargeable Li-S batteries(LSBs)are emerging as an important alternative to lithium-ion batteries(LIBs),owing to their high energy densities and low cost;yet sluggish redox kinetics of LiPSs results in inferior cycle...Rechargeable Li-S batteries(LSBs)are emerging as an important alternative to lithium-ion batteries(LIBs),owing to their high energy densities and low cost;yet sluggish redox kinetics of LiPSs results in inferior cycle life.Herein,we prepared multifunctional self-supporting hyphae carbon nanobelt(HCNB)as hosts by carbonization of hyphae balls of Rhizopus,which could increase the S loading of the cathode without sacrificing reaction kinetics.Trace platinum(Pt)nanoparticles were introduced into HCNBs(PtHCNBs)by ion-beam sputtering deposition.Based on the X-ray photoelectron spectroscopy analyses,the introduced trace Pt regulated the local electronic states of heteroatoms in HCNBs.Electrochemical kinetics investigation combined with operando Raman measurements revealed the accelerated reaction mechanics of sulfur species.Benefiting from the synergistic catalytic effect and the unique structures,the as-prepared PtHCNB/MWNCT/S cathodes delivered a stable capacity retention of 77%for 400 cycles at 0.5 C with a sulfur loading of 4.6 mg cm^(-2).More importantly,remarkable cycling performance was achieved with an high areal S loading of 7.6 mg cm^(-2).This finding offers a new strategy to prolong the cycle life of LSBs.展开更多
基金Project(41672290)supported by the National Natural Science Foundation of ChinaProject(2016J01189)supported by the Natural Science foundation of Fujian Province,China
文摘A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical properties of soil with the loading and unloading action during excavation process.The change law of earth pressure of the normal consolidation soil after the foundation pit excavation was analyzed,and elastic displacement calculation methods of analytic solution were further established given the influence of excavation and unloading.According to the change of stress state in the excavation process of foundation pit,the planar mechanical analysis model of the foundation excavation problem was established.By combining this model with the physical equations and geometric equations of plane strain problem with consideration of the loading and unloading modulus of soil,constitutive equation of the plane strain problem was also established.The loading and unloading modulus formula was obtained by using the parameter calculation method in Duncan-Chang curve model.The constitutive equation obtained from the model was used to calculate the soil stress state of each point to determine its loading and unloading modulus.Finally,the foundation pit displacement change after excavation was calculated,and thus the soil pressure distribution after retaining structure deformation.The theoretical results calculated by making corresponding programs were applied to engineering practice.By comparing the conventional calculation results with monitoring results,the practicability and feasibility of the calculation model were verified,which should provide a theoretical basis for similar projects.
基金Korea Institute of Energy Technology Evaluation and Planning,Grant/Award Number:20214000000320Samsung Research Funding&Incubation Center of Samsung Electronics,Grant/Award Number:SRFC-MA1901-06。
文摘Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles.
基金supported by NIH grants ( P30GM103333,R01AR054385)supported partially by a core access award through NIH NIGMS IDeA Program grant ( P20GM103446)
文摘Perlecan,a heparan sulfate proteoglycan,acts as a mechanical sensor for bone to detect external loading.Deficiency of perlecan increases the risk of osteoporosis in patients with Schwartz-Jampel Syndrome(SJS)and attenuates loading4nduced bone formation in perlecan deficient mice(Hypo).Considering that intracellular calcium[Ca2+]i is an ubiquitous messenger controlling numerous cellular processes including mechanotransduction,we hypothesized that perlecan deficiency impairs bone’s calcium signaling in response to loading.To test this,we performed real-time[Ca2+]i imaging on in situ osteocytes of adult murine tibiae under cyclic loading(8 N,Figure 1).Relative to wild type(WT),Hypo osteocytes showed decreases in the overall[Ca2+]i response rate(-58%),calcium peaks(-33%),cells with multiple peaks(-53%),peak magnitude(-6.8%),and recovery speed to baseline(-23%).RNA sequencing and pathway analysis of tibiae from mice subjected to one or seven days of unilateral loading demonstrated that perlecan deficiency significantly suppressed the calcium signaling,ECM-receptor interaction,and focal adhesion pathways following repetitive loading.Defects in the endoplasmic reticulum(ER)calcium cycling regulators such as Ryr1/ryanodine receptors and Atp2a1/Sercal calcium pumps were identified in Hypo bones.Taken together,impaired calcium signaling may contribute to bone’s reduced anabolic response to loading,underlying the osteoporosis risk for the SJS patients.
基金Project supported by the National Natural Science Foundation of China(No.10572002).
文摘By applying the integral transform method and the inverse transformation technique based upon the two types of integration, the present paper has successfully obtained an exact algebraic solution for a two-dimensional Lamb's problem due to a strip impulse loading for the first time. With the algebraic result, the excitation and propagation processes of stress waves, including the longitudinal wave, the transverse wave, and Rayleigh-wave, are discussed in detail. A few new conclusions have been drawn from currently available integral results or computational results.
基金supported by the National Natural Science Foundation of China(11622217)the National Key Project of Scientific Instrument and Equipment Development(11327802)+1 种基金the National Program for Special Support of Top-Notch Young Professionalssupported by the Fundamental Research Funds for the Central Universities(lzujbky-2017-ot18,lzujbky-2017-k18)
文摘Twist structures have diverse applications, ranging from dragline, electrical cable, and intelligent structure. Among these applications, tension deformation can't be avoided during the fabrication and working processes, which often leads to the twist structure rotation (called untwisting effect) and twist pitch increasing. As a consequence, this untwisting behavior has a large effect on the effective Young's modulus. In this paper, we present an improved model based on the classical Costello's theory to predict the effective Young's modulus of the basic structure, twisted by three same copper strands under cyclic loading. Series of experiments were carried out to verify the present model taking into account the untwisting effect. The experimental results have better agreements with the presented model than the common Costello's model.
基金National Natural Science Foundation of China Under Grant No.50378063
文摘Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.
文摘Behcet's disease(BD) is a rare and life-long disorder characterized by inflammation of blood vessels throughout the body. BD was originally described in 1937 as a syndrome involving oral and genital ulceration in addition to ocular inflammation. Intestinal BD refers to colonic ulcerative lesions documented by objective measures in patients with BD. Many studies have shown that over 40% of BD patients have gastrointestinal complaints. Symptoms include abdominal pain, diarrhea, nausea, anorexia and abdominal distension. Although gastrointestinal symptoms are common, the demonstration of gastrointestinal ulcers is rare. This so-called intestinal BD accounts for approximately 1% of cases. There is no specific test for BD, and the diagnosis is based on clinical criteria. The manifestations of intestinal BD are similar to those of other colitis conditions such as Crohn's disease or intestinal tuberculosis, thus, it is challenging for gastroenterologists to accurately diagnose intestinal BD in patients with ileocolonic ulcers. However, giant ulcers distributed in the esophagus and ileocecal junction with gastrointestinal hemorrhage are rare in intestinal BD. Here, we present a case of untypical intestinal BD. The patient had recurrent aphthous ulceration of the oral mucosa, and esophageal and ileo-colonic ulceration, but no typical extra-intestinal symptoms. During examination, the patient had massive acute lower gastrointestinal bleeding. The patient underwent ileostomy after an emergency right hemicolectomy and partial ileectomy, and was subsequently diagnosed with incomplete-type intestinal BD by pathology. The literature on the evaluation and management of this condition is reviewed.
基金the National Basic Research Program of China under Grant No.2013CB036405the Key Research Program of the Chinese Academy of Sciences under Grant No.KZZD-EW-05the Natural Science Foundation of China under Grant Nos.41402317,51209201 and 51279198
文摘The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to simulate the rails and a lower Euler beam to model the slab. Rail pads between the rails and slab are represented by a continuous layer of springs and dashpots. A series of point loads are formulated to describe the moving train loads. The governing equations of track-ground systems are solved using the double Fourier transform, and the dynamic responses in the time domain are obtained by the inverse Fourier transform. The results show that a train load with high velocity will generate a larger response in transversely isotropic saturated soil than the lower velocity load, and special attention should be paid on the pore pressure in the vicinity of the ground surface. The anisotropic parameters of a surface soil layer will have greater influence on the displacement and excess pore water pressure than those of the subsoil layer. The traditional design method taking ground soil as homogeneous isotropic soil is unsafe for the case of RE 〈 1 and RG 〈 1, so a transversely isotropic foundation model is of great significance to the design for high train velocities.
文摘Bloom’s taxonomy is widely used in educational research to categorize the cognitive skills required to answer exam questions.For this study,we analyzed how students categorize exam questions(high-level question or low-level question,)gathered data as to their rationale for categorization,and compared their categorizations to those of experts.We found that students consistently rank high-level questions incorrectly.We analyzed student reasons for their categorizations,and found that for many of the incorrectly categorized questions the students referred to reasons related to Cognitive Load Theory.This shows that cognitive load prevents students from accurately assessing the cognitive level of an exam question.Thus,extra cognitive load in exam questions may prevent those questions from accurately measuring the skills and knowledge of the student.This points to the need for instructors to eliminate cognitive load from their exams.
文摘This paper presents a method to derive the Dyadic Green’s Function(DGF)ofa loaded rectangular waveguide by using the image method.In the calculation of the DGF,we use the integral transformation and replace the multi-infinite summation by a single one;thus it greatly simplifies the calculation and saves computer time.As an example of the DGF’sapplication,we give the moment method’s scattering field calculation of a metal sphere resting onthe broad wall of the loaded rectangular waveguide.Results of our calculations well agree withboth data of experiments performed in our laboratory and those are published.It is easy to seethat the method used in this paper can be expanded to other related waveguide problems.
文摘Real-time applications based on Wireless Sensor Network(WSN)tech-nologies are quickly increasing due to intelligent surroundings.Among the most significant resources in the WSN are battery power and security.Clustering stra-tegies improve the power factor and secure the WSN environment.It takes more electricity to forward data in a WSN.Though numerous clustering methods have been developed to provide energy consumption,there is indeed a risk of unequal load balancing,resulting in a decrease in the network’s lifetime due to network inequalities and less security.These possibilities arise due to the cluster head’s limited life span.These cluster heads(CH)are in charge of all activities and con-trol intra-cluster and inter-cluster interactions.The proposed method uses Lifetime centric load balancing mechanisms(LCLBM)and Cluster-based energy optimiza-tion using a mobile sink algorithm(CEOMS).LCLBM emphasizes the selection of CH,system architectures,and optimal distribution of CH.In addition,the LCLBM was added with an assistant cluster head(ACH)for load balancing.Power consumption,communications latency,the frequency of failing nodes,high security,and one-way delay are essential variables to consider while evaluating LCLBM.CEOMS will choose a cluster leader based on the influence of the fol-lowing parameters on the energy balance of WSNs.According to simulatedfind-ings,the suggested LCLBM-CEOMS method increases cluster head selection self-adaptability,improves the network’s lifetime,decreases data latency,and bal-ances network capacity.
文摘The aim of this note is to study the effect of negative Poisson’s ratio on the quasi-static deformation of a poroelastic half-space with anisotropic permeability and compressible fluid and solid constituents by surface loads. Two particular cases considered are: two-dimensional normal strip loading and axisymmetric normal disc loading. It is found that a negative Poisson’s ratio makes the Mandel-Cryer effect more prominent. It also results in an increase in the magnitude of the surface settlement.
基金partially supported by grants from the National Natural Science Foundation of China(52072099)Team program of the Natural Science Foundation of Heilongjiang Province,China(No.TD2021E005)
文摘Rechargeable Li-S batteries(LSBs)are emerging as an important alternative to lithium-ion batteries(LIBs),owing to their high energy densities and low cost;yet sluggish redox kinetics of LiPSs results in inferior cycle life.Herein,we prepared multifunctional self-supporting hyphae carbon nanobelt(HCNB)as hosts by carbonization of hyphae balls of Rhizopus,which could increase the S loading of the cathode without sacrificing reaction kinetics.Trace platinum(Pt)nanoparticles were introduced into HCNBs(PtHCNBs)by ion-beam sputtering deposition.Based on the X-ray photoelectron spectroscopy analyses,the introduced trace Pt regulated the local electronic states of heteroatoms in HCNBs.Electrochemical kinetics investigation combined with operando Raman measurements revealed the accelerated reaction mechanics of sulfur species.Benefiting from the synergistic catalytic effect and the unique structures,the as-prepared PtHCNB/MWNCT/S cathodes delivered a stable capacity retention of 77%for 400 cycles at 0.5 C with a sulfur loading of 4.6 mg cm^(-2).More importantly,remarkable cycling performance was achieved with an high areal S loading of 7.6 mg cm^(-2).This finding offers a new strategy to prolong the cycle life of LSBs.