期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Precision Motion Control of Hydraulic Actuator Using Adaptive Back-Stepping Sliding Mode Controller
1
作者 Zhenshuai Wan Longwang Yue +1 位作者 Yanfeng Wang Pu Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1047-1065,共19页
Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic a... Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic actuator.Although various control methods have been employed to improve the tracking precision of the dynamic system,optimizing and adjusting control gain to mitigate the hydraulic actuator model uncertainties remains elusive.This study presents an adaptive back-stepping sliding mode controller(ABSMC)to enhance the trajectory tracking precision,where the virtual control law is constructed to replace the position error.The adaptive control theory is introduced in back-stepping controller design to compensate for the model uncertainties and time-varying disturbances.Based on Lyapunov theory,the finite-time convergence of the position tracking errors is proved.Furthermore,the effectiveness of the developed control scheme is conducted via extensive comparative experiments. 展开更多
关键词 Hydraulic actuator back-stepping control adaptive control model uncertainties
下载PDF
A Back-stepping Based Trajectory Tracking Controller for a Non-chained Nonholonomic Spherical Robot 被引量:6
2
作者 战强 刘增波 蔡尧 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第5期472-480,共9页
Spherical robot has good static and dynamic stability, which provides it with strong viability in hostile environment, but the lack of effective control methods has hindered its application and development. This artic... Spherical robot has good static and dynamic stability, which provides it with strong viability in hostile environment, but the lack of effective control methods has hindered its application and development. This article deals with the dynamic trajectory tracking problem of the spherical robot BHQ-2 designed for unmanned environment exploration. The dynamic model of the spherical robot is established with a simplified Boltzmann-Hamel equation, based on which a trajectory tracking controller is designed by using the back-stepping method. The convergence of the controller is proved with the Lyapunov stability theory. Numerical simulations show that with the controller the robot can globally and asymptotically track desired trajectories, both linear and circular. 展开更多
关键词 spherical mobile robot trajectory tracking control back-stepping Lyapunov function
下载PDF
Back-Stepping Control for Flexible Air-Breathing Hypersonic Vehicles Based on Uncertainty and Disturbance Estimator 被引量:2
3
作者 Lin Cao Dong Zhang Ao Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期504-513,共10页
A theoretical framework of nonlinear flight control for a flexible air-breathing hypersonic vehicle(FAHV)is proposed in this paper.In order to suppress the system uncertainty and external disturbance,an uncertainty an... A theoretical framework of nonlinear flight control for a flexible air-breathing hypersonic vehicle(FAHV)is proposed in this paper.In order to suppress the system uncertainty and external disturbance,an uncertainty and disturbance estimator(UDE)based back-stepping control strategy is designed for a dynamic state-feedback controller to provide stable velocity and altitude tracking.Firstly,the longitudinal dynamics of FAHV is simplified into a closure loop form with lumped uncertainty and disturbance.Then the UDE is applied to estimate the lumped uncertainty and disturbance for the purpose of control input compensation.While a nonlinear tracking differentiator is introduced to solve the problem of“explosion of term”in the back-stepping control.The stability of the UDE-based control strategy is proved by using Lyapunov stability theorem.Finally,simulation results are presented to demonstrate the capacity of the proposed control strategy. 展开更多
关键词 flexible air-breathing hypersonic vehicle(FAHV) uncertainty and disturbance estimator(UDE) back-stepping control
下载PDF
Adaptive Back-Stepping Control of Automotive Electronic Control Throttle
4
作者 Nobuo Kurihara Hiroyuki Yamaguchi 《Journal of Software Engineering and Applications》 2017年第1期41-55,共15页
Back-stepping control (BSC), which is deemed effective for a non-holonomic system, is applied to improving both responsiveness and resolution performance of an electronic control throttle (ECT) used in automotive engi... Back-stepping control (BSC), which is deemed effective for a non-holonomic system, is applied to improving both responsiveness and resolution performance of an electronic control throttle (ECT) used in automotive engines. This paper is characterized by the use of a two-step type BSC in a manner that achieves an improvement in responsiveness with the ETC operated in a fully opened state by adding a derivative term in Step 1 and the improvement in resolution performance with the ETC operated in a minutely opened state by adding an adaptive feature in the form of an integral term using the control deviation in Step 2. This paper presents an ECT control expressed as a second-order system including nonlinearities such as backlash of gear train and static friction in sliding area, a BSC system designed based on Lyapunov stability, and a determination method for control parameters. Also, a two-step type BSC system is formulated using Matlab/Simulink with a physics model as a control object. As a result of simulation analyses, it becomes clear that the BSC system can achieve quicker response because the derivative term works effectively and finer resolution because the adaptive control absorbs the error margin of the nonlinear compensation than conventional PID control. 展开更多
关键词 back-stepping control ADAPTIVE control ELECTRONIC THROTTLE AUTOMOTIVE ENGINE
下载PDF
Design of an Adaptive Controller for Dive-plane Control of a Torpedo-shaped AUV
5
作者 Jian Cao Yumin Su Jinxin Zhao 《Journal of Marine Science and Application》 2011年第3期333-339,共7页
Underwater vehicles operating in complex ocean conditions present difficulties in determining accurate dynamic models. To guarantee robustness against parameter uncertainty, an adaptive controller for dive-plane contr... Underwater vehicles operating in complex ocean conditions present difficulties in determining accurate dynamic models. To guarantee robustness against parameter uncertainty, an adaptive controller for dive-plane control, based on Lyapunov theory and back-stepping techniques, was proposed. In the closed-loop system, asymptotic tracking of the reference depth and pitch angle trajectories was accomplished. Simulation results were presented which show effective dive-plane control in spite of the uncertainties in the system parameters. 展开更多
关键词 adaptive control back-stepping trajectory tracking autonomous underwater vehicle dive-plane control
下载PDF
Hardware-in-loop adaptive neural control for a tiltable V-tail morphing aircraft
6
作者 Fu-xiang Qiao Jing-ping Shi +1 位作者 Xiao-bo Qu Yong-xi Lyu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期197-211,共15页
This paper proposes an adaptive neural control(ANC)method for the coupled nonlinear model of a novel type of embedded surface morphing aircraft which has a tiltable V-tail.A nonlinear model with sixdegrees-of-freedom ... This paper proposes an adaptive neural control(ANC)method for the coupled nonlinear model of a novel type of embedded surface morphing aircraft which has a tiltable V-tail.A nonlinear model with sixdegrees-of-freedom is established.The first-order sliding mode differentiator(FSMD)is applied to the control scheme to avoid the problem of“differential explosion”.Radial basis function neural networks are introduced to estimate the uncertainty and external disturbance of the model,and an ANC controller is proposed based on this design idea.The stability of the proposed ANC controller is proved using Lyapunov theory,and the tracking error of the closed-loop system is semi-globally uniformly bounded.The effectiveness and robustness of the proposed method are verified by numerical simulations and hardware-in-the-loop(HIL)simulations. 展开更多
关键词 Morphing aircraft back-stepping control Adaptive control Neural networks Radial basis function
下载PDF
Adaptive backstepping finite-time sliding mode control of spacecraft attitude tracking 被引量:9
7
作者 Chutiphon Pukdeboon 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期826-839,共14页
This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertaint... This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertainties and external disturbances. The first control scheme is developed by combining sliding mode con- trol with a backstepping technique to achieve fast and accurate tracking responses. To obtain higher tracking precision and relax the requirement of the upper bounds on the uncertainties, a se- cond control law is also designed by combining the second or- der sliding mode control and an adaptive backstepping technique. This control law provides complete compensation of uncertainty and disturbances. Although it assumes that the uncertainty and disturbances are bounded, the proposed control law does not require information about the bounds on the uncertainties and disturbances. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system are ensured by the Lya- punov approach. Numerical simulations on attitude tracking control of spacecraft are provided to demonstrate the performance of the proposed controllers. 展开更多
关键词 attitude tracking control sliding mode control back-stepping design finite-time convergence.
下载PDF
Sliding-mode control for a rolling-missile with input constraints 被引量:2
8
作者 HUA Siyu WANG Xugang ZHU Yin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期1041-1050,共10页
This paper investigates the overload stabilization problem of the rolling-missile subject to parameters uncertainty and actuator saturation. In order to solve this problem, a sliding-mode control(SMC) scheme is techni... This paper investigates the overload stabilization problem of the rolling-missile subject to parameters uncertainty and actuator saturation. In order to solve this problem, a sliding-mode control(SMC) scheme is technically employed by using the backstepping approach to make the dynamic system stable. In addition,SMC with the tanh-type switching function plays an important role in reducing intrinsic vibration. Furthermore, an auxiliary system(AS) is developed to compensate for nonlinear terms arising from input saturation. Finally, the simulation results provide a solution to demonstrate that the suggested SMC and the AS methodology have advantages of strong tracking capability, anti-interference ability and anti-saturation performance. 展开更多
关键词 input constraint back-stepping approach sliding-mode control(SMC) auxiliary control system
下载PDF
Active fault-tolerant control scheme of aerial manipulators with actuator faults 被引量:1
9
作者 DING Ya-dong WANG Yao-yao +1 位作者 JIANG Su-rong CHEN Bai 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期771-783,共13页
In this paper,an active fault-tolerant control(FTC)strategy of aerial manipulators based on non-singular terminal sliding mode(NTSM)and extended state observer(ESO)is proposed.Firstly,back-stepping technology is adopt... In this paper,an active fault-tolerant control(FTC)strategy of aerial manipulators based on non-singular terminal sliding mode(NTSM)and extended state observer(ESO)is proposed.Firstly,back-stepping technology is adopted as the control framework to ensure the global asymptotic stability of the closed-loop system.Next,the NTSM with estimated parameters of actuator faults is used as main robustness controller to deal with actuator faults.Then,the ESO is utilized to estimate and compensate the complex coupling effects and external disturbances.The Lyapunov stability theory can guarantee the asymptotic stability of aerial manipulators system with actuator faults and external disturbances.The proposed FTC scheme considers both actuator fault and modelling errors,combined with the adaptive law of actuator fault,which has better performance than traditional FTC scheme,such as NTSM.Finally,several comparative simulations are conducted to illustrate the effectiveness of the proposed FTC scheme. 展开更多
关键词 aerial manipulators back-stepping technology fault-tolerant control non-singular terminal sliding mode control extended state observer
下载PDF
Comparison of the Back-Stepping and PID Control of the Three-phase Inverter with Fully Consideration of Implementation Cost and Performance 被引量:2
10
作者 Jinsong He Xin Zhang 《Chinese Journal of Electrical Engineering》 CSCD 2018年第2期82-89,共8页
The three-phase inverter with LC filter has been widely applied in many industrial areas,mainly for non-connected grid utilization.Meanwhile,the standard of power quality needed in industrial applications tends to gro... The three-phase inverter with LC filter has been widely applied in many industrial areas,mainly for non-connected grid utilization.Meanwhile,the standard of power quality needed in industrial applications tends to grow as time goes by,requiring more advanced and economical control strategies to fulfil this objective without comprising the stability of the system.For this reason,a comparative study of Back-stepping control strategy and PID control method are presented in this paper,based on an unconnected-to-grid three-phase inverter with LC filter.The control purpose is to produce sinusoidal load currents with amplitude and frequency fixed by a reference signal,where both steady state performance as well as transient performance are examined and compared,with fully consideration of implementation cost.Two controllers have been built in a Matlab/Simulink environment,where Park transformation(abc/dq0)and bipolar Sinusoidal Pulse Width Modulation(SPWM)strategy are implemented.For validation,hardware verification is also presented based on dSPACE DS1103 control-based prototype. 展开更多
关键词 Steady state SPWM dynamic PID control back-stepping control THD COMPARISON
原文传递
Robust output-feedback stabilization of a class of nonlinear systems with the nonlinearities of varied form
11
作者 Sun Xiping Wang Yongji 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期629-634,共6页
The back-stepping designs based on confine functions are suggested for the robust output-feedback global stabilization of a class of nonlinear continuous systems; the proposed stabilizer is efficient for the nonlinear... The back-stepping designs based on confine functions are suggested for the robust output-feedback global stabilization of a class of nonlinear continuous systems; the proposed stabilizer is efficient for the nonlinear continuous systems confined by a bound function, the nonlinearities of the systems may be of varied forms or uncertain; the designed stabilizer is robust means that a class of nonlinear continuous systems can be stabilized by the same output feedback stabilization schemes; numerical simulation examples are given. 展开更多
关键词 nonlinear systems robust output-feedback control back-stepping design bound function
下载PDF
Switching control of morphing aircraft based on Q-learning 被引量:14
12
作者 Ligang GONG Qing WANG +1 位作者 Changhua HU Chen LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第2期672-687,共16页
This paper investigates a switching control strategy for the altitude motion of a morphing aircraft with variable sweep wings based on Q-learning.The morphing process is regarded as a function of the system states and... This paper investigates a switching control strategy for the altitude motion of a morphing aircraft with variable sweep wings based on Q-learning.The morphing process is regarded as a function of the system states and a related altitude motion model is established.Then,the designed controller is divided into the outer part and inner part,where the outer part is devised by a combination of the back-stepping method and command filter technique so that the’explosion of complexity’problem is eliminated.Moreover,the integrator structure of the altitude motion model is exploited to simplify the back-stepping design,and disturbance observers inspired from the idea of extended state observer are devised to obtain estimations of the system disturbances.The control input switches from the outer part to the inner part when the altitude tracking error converges to a small value and linear approximation of the altitude motion model is applied.The inner part is generated by the Q-learning algorithm which learns the optimal command in the presence of unknown system matrices and disturbances.It is proved rigorously that all signals of the closed-loop system stay bounded by the developed control method and controller switching occurs only once.Finally,comparative simulations are conducted to validate improved control performance of the proposed scheme. 展开更多
关键词 back-stepping COMMAND filter DISTURBANCE OBSERVER MORPHING aircraft Q-LEARNING SWITCHING control
原文传递
Modeling and control of a novel electro-hydrostatic actuator with adaptive pump displacement 被引量:9
13
作者 Yan WANG Shengrong GUO Hongkang DONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第1期365-371,共7页
The variable pump displacement and variable motor speed electro-hydrostatic actuator(EHA),one of the three types of EHAs,has advantages such as short response time,flexible speed regulation,and high efficiency.However... The variable pump displacement and variable motor speed electro-hydrostatic actuator(EHA),one of the three types of EHAs,has advantages such as short response time,flexible speed regulation,and high efficiency.However,the nonlinearity of its double-input single-output system poses a great challenge for system control.This study proposes a novel EHA with adaptive pump displacement and variable motor speed(EHA-APVM).A closed-loop position is realized using a servomotor.Moreover,the displacement varies with the system pressure;thus,the EHA-APVM is a single-input and single-output system.Firstly,the working principles of the EHA-APVM and the pump used in the system are introduced.Secondly,a nonlinear mathematical model of the proposed EHA-APVM control system is established,and a feedback back-stepping(FBBS)control algorithm is introduced to transform the complex nonlinear system into a linear system on the basis of the back-stepping control theory.Finally,simulation results prove that the EHA-APVM has a quick response and high robustness to variations of the load and the pump displacement.In this work,the size and weight of the motor are significantly reduced because the maximum power requirement is reduced,which is very beneficial for using the actuator in airborne equipment. 展开更多
关键词 Adaptive DISPLACEMENT PUMP back-stepping control Electro-hydrostatic actuator Feedback LINEARIZATION Robustness
原文传递
Adaptive accurate tracking control of HFVs in the presence of dead-zone and hysteresis input nonlinearities 被引量:4
14
作者 Zehong DONG Yinghui LI +1 位作者 Maolong LV Renwei ZUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期642-651,共10页
A novel accurate tracking controller is developed for the longitudinal dynamics of Hypersonic Flight Vehicles(HFVs)in the presence of large model uncertainties,external disturbances and actuator nonlinearities.Distinc... A novel accurate tracking controller is developed for the longitudinal dynamics of Hypersonic Flight Vehicles(HFVs)in the presence of large model uncertainties,external disturbances and actuator nonlinearities.Distinct from the state-of-the-art,besides being continuity,no restrictive conditions have been imposed on the HFVs dynamics.The system uncertainties are skillfully handled by being seen as bounded"disturbance terms".In addition,by means of backstepping adaptive technique,the accurate tracking(i.e.tracking errors converge to zero as time approaches infinity)rather than bounded tracking(i.e.tracking errors converge to residual sets)has been achieved.What’s more,the accurate tracking problems for HFVs subject to actuator dead-zone and hysteresis are discussed,respectively.Then,all signals of closed-loop system are verified to be Semi-Global Uniformly Ultimate Boundness(SGUUB).Finally,the efficacy and superiority of the developed control strategy are confirmed by simulation results. 展开更多
关键词 Accurate tracking control back-stepping control Dead-Zone and hysteresis Hypersonic flight vehicles Non-affine model
原文传递
Eagle Vision-Based Coordinate Landing Control Framework of Unmanned Aerial Vehicles on an Unmanned Surface Vehicle 被引量:1
15
作者 Yang Yuan Xiaobin Xu +4 位作者 Haibin Duan Zhigang Zeng Dukun Xu Rujia Chen Tongyan Wu 《Guidance, Navigation and Control》 2022年第4期57-68,共12页
The coordinate landing control of the unmanned aerial vehicles(UAVs)is a key technology to expand the cooperation between the UAVs and the unmanned surface vehicle(USV).This paper provides an eagle vision-based coordi... The coordinate landing control of the unmanned aerial vehicles(UAVs)is a key technology to expand the cooperation between the UAVs and the unmanned surface vehicle(USV).This paper provides an eagle vision-based coordinate landing control framework for the UAV swarm landing on a USV.Back-stepping controller is designed to guarantee that the tracking errors in both of the approaching stage and the landing stage converge to zero.Eagle vision is applied in the visual navigation to improve the landing accuracy.The experiment verified the feasibility of the proposed method. 展开更多
关键词 Coordinate landing control framework back-stepping controller eagle vision
原文传递
Adaptive Robust Control for an Active Heave Compensation System
16
作者 李家旺 王旭阳 葛彤 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第1期17-24,共8页
Active heave compensation systems are usually employed in offshore and deep-sea operations to reduce the adverse impact of unexpected vessel’s vertical motion on the response of underwater instruments.This paper pres... Active heave compensation systems are usually employed in offshore and deep-sea operations to reduce the adverse impact of unexpected vessel’s vertical motion on the response of underwater instruments.This paper presents a control strategy for an active heave compensation system consisting of an electro-hydraulic system driven by a double rod actuator,which is subjected to parametric uncertainties and unmeasured environmental disturbances.Adaptive observer and discontinuous projection type updating law with bounded adaption rate are presented firstly to estimate the uncertain system parameters.Then a similar estimation algorithm is designed by using a multiple delayed version of the system to enhance the performance of parameter observation.A reduced order observer is also introduced to estimate unknown wave disturbances.Using the obtained uncertainty information,the resulting control development and stability analysis are implemented based on the Lyapunov’s direct method and back-stepping technique.The proposed controller guarantees the heave compensation error convergent to a bounded neighborhood around the origin.Simulations illustrate the effectiveness of the proposed control system. 展开更多
关键词 heave compensation parameter estimation robust control back-stepping
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部