Background: It has been postulated that elliptical cutaneous excisions must possess a length-to-width ratio of 3 to 4 and a vertex angle of 30o or less in order to be closed primarily without creating a “dog ear”. T...Background: It has been postulated that elliptical cutaneous excisions must possess a length-to-width ratio of 3 to 4 and a vertex angle of 30o or less in order to be closed primarily without creating a “dog ear”. These dimensions became axiomatic in cutaneous surgery and have been taught in the apprenticeship model for years. The present article examines the validity of that paradigm. Methods: We collected data from two sources: ellipses described in the literature (57 cases);and elliptical excisions performed at the authors’ outpatient clinic (83 cases). The surgical ellipse lengths, widths, and vertex angles were analyzed, and the data were compared to a mathematical formula used to generate a fusiform ellipse. Results: The length-to-width ratio of 3 - 4 was found to be inconsistent with the recommended vertex angle of 30o. In fact, a length-to-width ratio of 3 - 4 determines a vertex angle of 48o - 63o. A 30o vertex angle is only feasible with long length-to-width ration of about 7.5. Conclusions: The paradigm that surgical ellipses should have a vertex angle of 30o with length-to-width ratio of 3 - 4 is incorrect. Evidence from actual surgical practice and from mathematical formulation shows that either the length-to-width ratio must be larger than 3 - 4 or the vertex angle must be larger than 30 degrees.展开更多
Based on the assumption of additional three-hinge arching action,an analytical method was proposed to predict the additional load of lateral restraint reinforced concrete (RC) slab under compressive membrane action (C...Based on the assumption of additional three-hinge arching action,an analytical method was proposed to predict the additional load of lateral restraint reinforced concrete (RC) slab under compressive membrane action (CMA),and its ultimate load could be obtained by adding pure bending load. The experiment of twelve one-way RC slabs supported by shear-walls was carried out,and the calculations of this proposed method provide good predictions for the experimental evidences. The influence of some design parameters on bearing capacity was also investigated. It is shown that the effect of vertical load on ending shear-wall on the ultimate load capacity can be generally neglected when the bending restraint is satisfied. The additional load capacity also decreases with the increase of the span-to-height ratio of central slab. When reducing the reinforcement area,the additional load capacity is increased,and this method can be used to save steel or enhance the ultimate load capacity of low steel ratio slab.展开更多
文摘Background: It has been postulated that elliptical cutaneous excisions must possess a length-to-width ratio of 3 to 4 and a vertex angle of 30o or less in order to be closed primarily without creating a “dog ear”. These dimensions became axiomatic in cutaneous surgery and have been taught in the apprenticeship model for years. The present article examines the validity of that paradigm. Methods: We collected data from two sources: ellipses described in the literature (57 cases);and elliptical excisions performed at the authors’ outpatient clinic (83 cases). The surgical ellipse lengths, widths, and vertex angles were analyzed, and the data were compared to a mathematical formula used to generate a fusiform ellipse. Results: The length-to-width ratio of 3 - 4 was found to be inconsistent with the recommended vertex angle of 30o. In fact, a length-to-width ratio of 3 - 4 determines a vertex angle of 48o - 63o. A 30o vertex angle is only feasible with long length-to-width ration of about 7.5. Conclusions: The paradigm that surgical ellipses should have a vertex angle of 30o with length-to-width ratio of 3 - 4 is incorrect. Evidence from actual surgical practice and from mathematical formulation shows that either the length-to-width ratio must be larger than 3 - 4 or the vertex angle must be larger than 30 degrees.
基金Project(PCSIRT0518) supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘Based on the assumption of additional three-hinge arching action,an analytical method was proposed to predict the additional load of lateral restraint reinforced concrete (RC) slab under compressive membrane action (CMA),and its ultimate load could be obtained by adding pure bending load. The experiment of twelve one-way RC slabs supported by shear-walls was carried out,and the calculations of this proposed method provide good predictions for the experimental evidences. The influence of some design parameters on bearing capacity was also investigated. It is shown that the effect of vertical load on ending shear-wall on the ultimate load capacity can be generally neglected when the bending restraint is satisfied. The additional load capacity also decreases with the increase of the span-to-height ratio of central slab. When reducing the reinforcement area,the additional load capacity is increased,and this method can be used to save steel or enhance the ultimate load capacity of low steel ratio slab.