This paper describes the required testing and approval procedures of new track systems operated in Europe. To begin with, test methods and performance specifications according to European Standard (EN) are outlined....This paper describes the required testing and approval procedures of new track systems operated in Europe. To begin with, test methods and performance specifications according to European Standard (EN) are outlined. These include the repeated loading test, the determination of the static and dynamic stiffness of rail pads, clamping force and longitudinal rail resistance. The fact that labor tests are unable to simulate all the conditions in situ shows that these labor tests are not sufficient for the evaluation of the long term behaviour of a new track system: a test track of sufficient length must be constructed and exposed to traffic loads. In Europe to be accredited as a new system, a new slab track system must have a trial time of more than two years, during which the features of the whole system can be recognized. In the second part of this paper, the experience of the Institute of Road, Railway and Airfield Construction of TUM concerning the measuring methods of slab track systems carrying traffic are outlined. Also the approval procedure of the new slab tracks in Germany is discussed.展开更多
The motor and trailer cars of a high-speed train were modeled as a multi-rigid body system with two suspensions. According to structural characteristic of a slab track, a new spatial vibration model of track segment e...The motor and trailer cars of a high-speed train were modeled as a multi-rigid body system with two suspensions. According to structural characteristic of a slab track, a new spatial vibration model of track segment element of the slab track was put forward. The spatial vibration equation set of the high-speed train and slab track system was then established on the basis of the principle of total potential energy with stationary value in elastic system dynamics and the rule of "set-in-right-position" for formulating system matrices. The equation set was solved by the Wilson-θ direct integration method. The contents mentioned above constitute the analysis theory of spatial vibration of high-speed train and slab track system. The theory was then verified by the high-speed running experiment carried out on the slab track in the Qinghuangdao-Shenyang passenger transport line. The results show that the calculated results agree well with the measured rcsults, such as the calculated lateral and vertical rail displacements are 0.82 mm and 0.9 mm and the measured ones 0.75 mm and 0.93 mm, respectively; the calculated lateral and vertical wheel-rail forces are 8.9 kN and 102.3 kN and the measured ones 8.6 kN and 80.2 kN, respectively. The interpolation method, that is, the lateral finite strip and slab segment element, for slab deformation proposed is of simplification and applicability compared with the traditional plate element method. All of these demonstrate the reliability of the theory proposed.展开更多
Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynam...Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynamic responses under different temperature gradients of the slab are theoretically investigated in this work.Design/methodology/approach-Considering the moving train,the temperature gradient of the slab,and the gravity of the slab track,a dynamic model for a high-speed train that runs along the CRTS Ⅲ slab track on subgrade is developed by a nonlinear coupled way in Abaqus.Findings-The results are as follows:(1)The upward transmission of the periodic deformation of the slab causes periodic track irregularity.(2)Because of the geometric constraint of limiting structures,the maximum bending stresses of the slab occur near the end of the slab under positive temperature gradients,but in the middle of the slab under negative temperature gradients.(3)The periodic deformation of the slab can induce periodic changes in the interlayer stiffness and contact status,leading to a large vibration of the slab.Because of the vibration-reduction capacity of the fastener and the larger mass of the concrete base,the accelerations of both the slab and concrete base are far less than the acceleration of the rail.Originality/value-This study reveals the influence mechanism of temperature gradient-induced periodic deformation in the dynamic responses of the train-track system,and it also provides a guide for the safe service of CRTS Ⅲ slab track.展开更多
Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a ...Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a novel slab trackform for high-speed railways is investigated using three-dimensional finite element modelling in Abaqus.It is then compared to the performance of a ballasted track.First,slab and ballasted track models are developed to replicate the full-scale testing of track sections.Once the models are calibrated with the experimental results,the novel slab model is developed and compared against the calibrated slab track results.The slab and ballasted track models are then extended to create linear dynamic models,considering the track geodynamics,and simulating train passages at various speeds,for which the Ledsgard documented case was used to validate the models.Trains travelling at low and high speeds are analysed to investigate the track deflections and the wave propagation in the soil,considering the issues associated with critical speeds.Various train loading methods are discussed,and the most practical approach is retained and described.Moreover,correlations are made between the geotechnical parameters of modern high-speed rail and conventional standards.It is found that considering the same ground condition,the slab track deflections are considerably smaller than those of the ballasted track at high speeds,while they show similar behaviour at low speeds.展开更多
Temperature is one of the important loads for designing slab track. The characteristic of slab track tem- perature varies greatly with different regional climates. In this work, a bi-block slab track model was built u...Temperature is one of the important loads for designing slab track. The characteristic of slab track tem- perature varies greatly with different regional climates. In this work, a bi-block slab track model was built under outdoor conditions in Chengdu area; the statistical characteristic of temperature gradient in track slab and the relationship between temperature gradient and surface air temperature were tested and analyzed. The results show that the track slab temperature gradient will vary periodically according to the surface air temperature, and show a clear nonlinearity along the height direction. The temperature gradient distribution is extremely uneven: the temperature gradient in the top part of the track slab is larger than that in the bottom part; the most frequently occurring temperature gradient of the track slab is around -3.5 ℃/m and more than 75 % locates in the level -10 to 10 ℃/m; concrete with a relatively good heat exchange condition with the surrounding air has a narrower band distribution. In addition, the frequency distribution histogram should exclude the time zone from 00:00 to 06:00 because there is almost no traffic in this period. The amplitude of track slab temperature variation is obviously lower than that of the air temperature variation, and the former is approximately linear with the latter.展开更多
By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibra...By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibration of high-speed train and slab track system. The corresponding computer program was written by FORTRAN language. The dynamic responses of the high-speed train and slab track under cross-wind action were calculated. Meanwhile, the effects of the cross-wind on the dynamic responses of the system were also analyzed. The results show that the cross-wind has a significant influence on the lateral and vertical displacement responses of the car body, load reduction factor and overturning factor. For example, the maximum lateral displacement responses of the car body of the first trailer with and without cross-wind forces are 32.10 and 1.60 mm, respectively. The maximum vertical displacement responses of the car body of the first trailer with and without cross-wind forces are 6.60 and 3.29 mm, respectively. The maximum wheel load reduction factors of the first trailer with and without cross-wind forces are 0.43 and 0.22, respectively. The maximum overturning factors of the first trailer with and without cross-wind forces are 0.28 and 0.08, respectively. The cross-wind affects the derailment factor and lateral Sperling factor of the moving train to a certain extent. However, the lateral and vertical displacement responses of rails with the crnss-wind are almost the same as those without the cross-wind. The method presented and the corresponding computer program can be used to calculate the interaction between trains and track in cross-wind.展开更多
The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to si...The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to simulate the rails and a lower Euler beam to model the slab. Rail pads between the rails and slab are represented by a continuous layer of springs and dashpots. A series of point loads are formulated to describe the moving train loads. The governing equations of track-ground systems are solved using the double Fourier transform, and the dynamic responses in the time domain are obtained by the inverse Fourier transform. The results show that a train load with high velocity will generate a larger response in transversely isotropic saturated soil than the lower velocity load, and special attention should be paid on the pore pressure in the vicinity of the ground surface. The anisotropic parameters of a surface soil layer will have greater influence on the displacement and excess pore water pressure than those of the subsoil layer. The traditional design method taking ground soil as homogeneous isotropic soil is unsafe for the case of RE 〈 1 and RG 〈 1, so a transversely isotropic foundation model is of great significance to the design for high train velocities.展开更多
By studying the slab moving in detail in the plate rolling process, the problem of slab tracking and controlling was solved by using the distributed control system. The problems of rhythm control for the big-complex s...By studying the slab moving in detail in the plate rolling process, the problem of slab tracking and controlling was solved by using the distributed control system. The problems of rhythm control for the big-complex system, the exchange of manual and automatic operations, the data exchange between the levelⅠ, TCS (technology control system) and levelⅡ, PCS (process control system), are solved. By this way, the automatic level of the plate production line is improved.展开更多
Purpose–The construction of cement asphalt(CA)emulsified mortar can obviously disturb the slab status after the fine adjustment.To decrease or eliminate the influence of CA mortar grouting on track slab geometry stat...Purpose–The construction of cement asphalt(CA)emulsified mortar can obviously disturb the slab status after the fine adjustment.To decrease or eliminate the influence of CA mortar grouting on track slab geometry status,the effects of grouting funnel,slab pressing method,mortar expansion ratio,seepage ratio and grouting area on China Railway Track System Type(CRTS I)track slab geometry status were discussed in this paper.Design/methodology/approach–Combined with engineering practice,this paper studied the expansion law of filling layer mortar,the liquid level height of the filling funnel,the pressure plate device and the amount of exudation water and systematically analyzed the influence of filling layer mortar construction on the state of track slab.Relevant precautions and countermeasures were put forward.Findings–The results showed that the track slab floating values of four corners were different with the CA mortar grouting and the track slab corner near CA mortar grouting hole had the maximum floating values.The anti-floating effect of“7”shaped slab pressing device was more efficient than fixed-joint angle iron,and the slab floating value could be further decreased by increasing the amount of“7”shaped slab pressing devices.After CA mortar grouting,the track slab floating pattern had a close correlation with the expansion rate and water seepage rate of CA mortar over time and the expansion and water seepage rate of the mortar were faster when the temperature was high.Furthermore,the use of strip CA mortar filling under the rail bearing platform on bothsides could effectively reduce the float under the track slab,and it could also save mortar consumption and reduce costs.Originality/value–This study plays an important role in controlling the floating values,CA mortar dosage and the building cost of projects by grouting CA mortar at two flanks of filling space.The research results have guiding significance for the design and construction of China’s CRTS I,CRTS II and CRTS III track slab.展开更多
Good interlayer interface performance is the key to maintaining the stability of CRTSⅡslab ballastless track structure.In a project,the tangential cohesion parameters of CRTSⅡslab ballastless track structure are gen...Good interlayer interface performance is the key to maintaining the stability of CRTSⅡslab ballastless track structure.In a project,the tangential cohesion parameters of CRTSⅡslab ballastless track structure are generally measured by horizontal push plate test,so as to measure the interlayer interface performance.Horizontal push plate contraction scale and full scale tests of CRTSⅡslab ballastless track structure are carried out to obtain the tangential force-displacement relation curve of the interlayer interface,thus obtaining the parameters of cohesion model.A threedimensional progressive damage analysis model for CRTSⅡslab ballastless track structure is established,the whole process inversion of the horizontal push plate test is carried out,and the reliability of the contraction scale test results is verified by means of simulation and comparative analysis of test results.The results show that the greater the tangential stiffness of the interlayer interface of the track structure,the weaker the interlayer deformation coordination capability;the more significant the non-uniformity of the interface damage,the more likely the stress concentration;the greater the fracture toughness,the less likely the disjoint in the interlayer interface of the track structure.展开更多
Virtual simulation teaching is an addendum to the experimental teaching mode of railway engineering,and the two teaching methods complement each other and merge with each other.In view of the current research,there is...Virtual simulation teaching is an addendum to the experimental teaching mode of railway engineering,and the two teaching methods complement each other and merge with each other.In view of the current research,there is little discussion about the integration path of the two above.Based on the connotation and design of virtual simulation teaching,this research systematically expounds the integration of the real path and path optimization problems,and puts forward the railway engineering experimental teaching principles based on virtual simulation teaching.On the basis of this research,a virtual simulation experiment platform for vibration mechanics and its application in the floating slab vibration damping track was developed to make full use of three-dimensional modeling,virtual reality,human-computer interaction and other technologies,which can realistically simulate the vibration law and vibration damping effect of the rail transit system,and in the hope that the virtual simulation teaching can be widely used in the experimental teaching mode of railway engineering in the future.展开更多
The interface of slab track laid in cold regions is prone to debonding under the coupling of freeze-thaw cyclesand temperature loads.Based on the composite specimen tests,the parameters of cohesive zone model were obt...The interface of slab track laid in cold regions is prone to debonding under the coupling of freeze-thaw cyclesand temperature loads.Based on the composite specimen tests,the parameters of cohesive zone model were obtained andused in a simulation model of CRTS III prefabricated slab track to study the interlayer damage.The results show that 1)the digital image correlation(DIC)technique can accurately capture the strain field changes on the interface of compositespecimens under splitting and shear loading;2)when the temperature gradient is−40℃/m−60℃/m,the interfacedamage of the slab track is minimal and presents different patterns of expansion under positive and negative temperaturegradients,each corresponding to damage of the cohesive element dominated by shear stress and normal tensile stress,respectively;3)the reduction of the elastic modulus at the concrete base after freeze-thaw inhibits interface damage andleads to a higher starting temperature gradient load,but cracking can occur on the concrete base after 150 freeze-thaws.For this reason,in the light of damage control of both the interface and concrete base,the elastic modulus of the concretebase is 54%or over that without freeze-thaw cycles.展开更多
Under repeated train-induced loads, cement and emulsified asphalt mortar(CA mortar) as a viscoelastic material has a time-dependent deformation, part of which is irreversible. This could lead to debonding between the ...Under repeated train-induced loads, cement and emulsified asphalt mortar(CA mortar) as a viscoelastic material has a time-dependent deformation, part of which is irreversible. This could lead to debonding between the mortar layer and the track slab. Based on the theory of viscoelasticity and the analytical method of the time hardening law(THL), the viscoelastic deformation behavior of CA mortar was studied. Using ABAQUS, we established a solid model of China railway track system(CRTS) Ⅰ prefabricated slab track, with CA mortar at different initial Young’s moduli under cyclic loading corresponding to the influence of actual train loads. The results reveal that the fitted parameters of the THL for CA mortar are suitable for describing its viscoelastic deformation. As the initial Young’s modulus increases, the strain difference before and after cyclic loading gradually decreases, and the displacement difference increases from 0.2 mm to 0.6 mm. The deformation mainly occurs at the end of a mortar layer with longitudinal distribution of about 2.5 times the fasteners’ spacing. It follows that the viscoelastic performance of CA mortar is one of the most important reasons that cause debonding underneath the track slab. Therefore, we suggest that the adverse effects of viscoelastic behavior of CA mortar should be considered when researching such deformation and damage.展开更多
Considering the CRTS-II track slab,which is commonly used in the Chinese high-speed railway system,a vehicle-track-bridge dynamic analysis method is proposed in which the vehicle subsystem equations are established by...Considering the CRTS-II track slab,which is commonly used in the Chinese high-speed railway system,a vehicle-track-bridge dynamic analysis method is proposed in which the vehicle subsystem equations are established by the rigid body dynamics method,the track subsystem and the bridge subsystem equations are established by the FEM,the wheel-rail contact relation is defined by the corresponding assumption in vertical direction and the Kalker linear creep theory in lateral direction.The in-span spring element is derived to model the track-bridge interaction;the equal-band-width storage is adopted to fit the track structure with multilayer uniform section beam;and the dynamic equilibrium equations are solved by the inter-history iteration method.As a case study,the response of a CRH2 high-speed train transverses a simply-supported bridge with successive 31.5m double bound pre-stress beams is simulated.The result shows that using the vehicle-track-bridge interaction model instead of the vehicle-bridge interaction model helps predict the rotation angle at beam ends and choose an economic beam vertical stiffness.展开更多
Subgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures.In this study,we used a static model to:(1)inve...Subgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures.In this study,we used a static model to:(1)investigate track-subgrade frost heave and develop a dynamic model of vehicle-track-subgrade frost heave;(2)explore the transfer relation between subgrade frost heave and track structure deformation;(3)examine the characteristics of interlayer debonding;(4)study the influence of subgrade frost heave on the dynamic response of vehicles in high-speed railways in seasonally frozen regions.A Fourier series was used to fit the frost heave waveform and simulate the behavior of subgrade uneven frost heave using data collected on-site.The results show:(i)The position of frost heave significantly affects the transfer of deformation to a slab track.The largest deformation of the track slab,with the amplitude transfer ratio reaching 20%,was recorded when the frost heave occurred near the joint of the base plate.(ii)At the same frost heave amplitude,long-wave frost heave causes smaller deformation and debonding of the track structure than short-wave frost heave.In the wavelength range of 10-30 m,the main frequency of the acceleration spectral density was concentrated between 3.5 and 3.7 Hz,with larger frost heave wavelengths producing smaller superposition on the vertical acceleration of the vehicle.(ii)The maximum wheel-rail force occurs when the front bogie passes the frost heave peak,with greater frost heave amplitudes producing greater wheel-rail force.From these results,we conclude there is a clear need to control the frost heave deformation of the track to reduce the dynamic response of the vehicle and in turn improve train operatSubgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures.In this study,we used a static model to:(1)investigate track`-subgrade frost heave and develop a dynamic model of vehicle`-track`-subgrade frost heave;(2)explore the transfer relation between subgrade frost heave and track structure deformation;(3)examine the characteristics of interlayer debonding;(4)study the influence of subgrade frost heave on the dynamic response of vehicles in high-speed railways in seasonally frozen regions.A Fourier series was used to fit the frost heave waveform and simulate the behavior of subgrade uneven frost heave using data collected on-site.The results show:(i)The position of frost heave significantly affects the transfer of deformation to a slab track.The largest deformation of the track slab,with the amplitude transfer ratio reaching 20%,was recorded when the frost heave occurred near the joint of the base plate.(ii)At the same frost heave amplitude,long-wave frost heave causes smaller deformation and debonding of the track structure than short-wave frost heave.In the wavelength range of 10-30 m,the main frequency of the acceleration spectral density was concentrated between 3.5 and 3.7 Hz,with larger frost heave wavelengths producing smaller superposition on the vertical acceleration of the vehicle.(iii)The maximum wheel`-rail force occurs when the front bogie passes the frost heave peak,with greater frost heave amplitudes producing greater wheel`-rail force.From these results,we conclude there is a clear need to control the frost heave deformation of the track to reduce the dynamic response of the vehicle and in turn improve train operations.ions.展开更多
The extensive use of steel spring floating slab tracks has effectively addressed the challenge of alleviating the environmental vibrations induced by urban rail transit systems.However,under the combined action of tra...The extensive use of steel spring floating slab tracks has effectively addressed the challenge of alleviating the environmental vibrations induced by urban rail transit systems.However,under the combined action of train dynamic loads and complex environmental factors,problems,such as the fracture of steel spring vibration isolators and suspension vibrations induced by the uneven settlement of the base,often occur.The failure of isolator support stiffness is often hidden in its early stages and is challenging to identify by conventional detection methods.At the same time,it will aggravate the wheel-rail interaction,accelerate the deterioration of track structure,and even affect the driving safety.This study first establishes a detailed coupled train-floating slab track-foundation analytical model.Then the influence of the vibration isolator support stiffness failure on the dynamic indices of the floating slab track system response is analyzed.A set of defect identification methods that can detect the number of failed steel springs,severity of damage,and their location is proposed.Finally,an intelligent monitoring system for support stiffness of floating slab track is built by combining the density-based spatial clustering of applications with noise algorithm and statistical data analysis and is applied to a rail line in southern China.During a three-year monitoring campaign,a suspension failure and a fracture of a steel spring were each successfully detected and detailed failure information was obtained.Field investigation results were consistent with the damage identification results.After repair,the track structure dynamic response returned to the average pre-damage level and further deterioration had been arrested.The proposed damage identification methods and monitoring system provide an approach for intelligent identification of track structure support stiffness failures.展开更多
文摘This paper describes the required testing and approval procedures of new track systems operated in Europe. To begin with, test methods and performance specifications according to European Standard (EN) are outlined. These include the repeated loading test, the determination of the static and dynamic stiffness of rail pads, clamping force and longitudinal rail resistance. The fact that labor tests are unable to simulate all the conditions in situ shows that these labor tests are not sufficient for the evaluation of the long term behaviour of a new track system: a test track of sufficient length must be constructed and exposed to traffic loads. In Europe to be accredited as a new system, a new slab track system must have a trial time of more than two years, during which the features of the whole system can be recognized. In the second part of this paper, the experience of the Institute of Road, Railway and Airfield Construction of TUM concerning the measuring methods of slab track systems carrying traffic are outlined. Also the approval procedure of the new slab tracks in Germany is discussed.
基金Project(2007CB714706) supported by the National Basic Research Program of ChinaProject (50678176) supported by the National Natural Science Foundation of ChinaProject(NCET-07-0866) supported by the Program for New Century Excellent Talents in University
文摘The motor and trailer cars of a high-speed train were modeled as a multi-rigid body system with two suspensions. According to structural characteristic of a slab track, a new spatial vibration model of track segment element of the slab track was put forward. The spatial vibration equation set of the high-speed train and slab track system was then established on the basis of the principle of total potential energy with stationary value in elastic system dynamics and the rule of "set-in-right-position" for formulating system matrices. The equation set was solved by the Wilson-θ direct integration method. The contents mentioned above constitute the analysis theory of spatial vibration of high-speed train and slab track system. The theory was then verified by the high-speed running experiment carried out on the slab track in the Qinghuangdao-Shenyang passenger transport line. The results show that the calculated results agree well with the measured rcsults, such as the calculated lateral and vertical rail displacements are 0.82 mm and 0.9 mm and the measured ones 0.75 mm and 0.93 mm, respectively; the calculated lateral and vertical wheel-rail forces are 8.9 kN and 102.3 kN and the measured ones 8.6 kN and 80.2 kN, respectively. The interpolation method, that is, the lateral finite strip and slab segment element, for slab deformation proposed is of simplification and applicability compared with the traditional plate element method. All of these demonstrate the reliability of the theory proposed.
基金supported by National Key R&D Program of China[Grant No.2022YFB2603400]R&D Project of China State Railway Group Corporation Limited[Grant No.P2021G053]R&D Project of China Academy of Railway Science Corporation Limited[Grant No.2023YJ200].
文摘Purpose-Temperature is an important load for a ballastless track.However,little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient.The dynamic responses under different temperature gradients of the slab are theoretically investigated in this work.Design/methodology/approach-Considering the moving train,the temperature gradient of the slab,and the gravity of the slab track,a dynamic model for a high-speed train that runs along the CRTS Ⅲ slab track on subgrade is developed by a nonlinear coupled way in Abaqus.Findings-The results are as follows:(1)The upward transmission of the periodic deformation of the slab causes periodic track irregularity.(2)Because of the geometric constraint of limiting structures,the maximum bending stresses of the slab occur near the end of the slab under positive temperature gradients,but in the middle of the slab under negative temperature gradients.(3)The periodic deformation of the slab can induce periodic changes in the interlayer stiffness and contact status,leading to a large vibration of the slab.Because of the vibration-reduction capacity of the fastener and the larger mass of the concrete base,the accelerations of both the slab and concrete base are far less than the acceleration of the rail.Originality/value-This study reveals the influence mechanism of temperature gradient-induced periodic deformation in the dynamic responses of the train-track system,and it also provides a guide for the safe service of CRTS Ⅲ slab track.
基金Engineering and Physical Sciences Research Council (EPSRC) is also acknowledged for funding this work under Grant Number EP/N009207/1.
文摘Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a novel slab trackform for high-speed railways is investigated using three-dimensional finite element modelling in Abaqus.It is then compared to the performance of a ballasted track.First,slab and ballasted track models are developed to replicate the full-scale testing of track sections.Once the models are calibrated with the experimental results,the novel slab model is developed and compared against the calibrated slab track results.The slab and ballasted track models are then extended to create linear dynamic models,considering the track geodynamics,and simulating train passages at various speeds,for which the Ledsgard documented case was used to validate the models.Trains travelling at low and high speeds are analysed to investigate the track deflections and the wave propagation in the soil,considering the issues associated with critical speeds.Various train loading methods are discussed,and the most practical approach is retained and described.Moreover,correlations are made between the geotechnical parameters of modern high-speed rail and conventional standards.It is found that considering the same ground condition,the slab track deflections are considerably smaller than those of the ballasted track at high speeds,while they show similar behaviour at low speeds.
基金supported by the National Key Basic Research Program of China (973 Program) (2013CB036202)the National Natural Science Foundation of China (51008258)Fundamental Research Funds for the Central Universities (SWJTU12CX065)
文摘Temperature is one of the important loads for designing slab track. The characteristic of slab track tem- perature varies greatly with different regional climates. In this work, a bi-block slab track model was built under outdoor conditions in Chengdu area; the statistical characteristic of temperature gradient in track slab and the relationship between temperature gradient and surface air temperature were tested and analyzed. The results show that the track slab temperature gradient will vary periodically according to the surface air temperature, and show a clear nonlinearity along the height direction. The temperature gradient distribution is extremely uneven: the temperature gradient in the top part of the track slab is larger than that in the bottom part; the most frequently occurring temperature gradient of the track slab is around -3.5 ℃/m and more than 75 % locates in the level -10 to 10 ℃/m; concrete with a relatively good heat exchange condition with the surrounding air has a narrower band distribution. In addition, the frequency distribution histogram should exclude the time zone from 00:00 to 06:00 because there is almost no traffic in this period. The amplitude of track slab temperature variation is obviously lower than that of the air temperature variation, and the former is approximately linear with the latter.
基金Project (2007CB714706) supported by the Major State Basic Research and Development Program of ChinaProject (50678176) supported by the National Natural Science Foundation of ChinaProject (NCET-07-0866) supported by the New Century Excellent Talents in University
文摘By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibration of high-speed train and slab track system. The corresponding computer program was written by FORTRAN language. The dynamic responses of the high-speed train and slab track under cross-wind action were calculated. Meanwhile, the effects of the cross-wind on the dynamic responses of the system were also analyzed. The results show that the cross-wind has a significant influence on the lateral and vertical displacement responses of the car body, load reduction factor and overturning factor. For example, the maximum lateral displacement responses of the car body of the first trailer with and without cross-wind forces are 32.10 and 1.60 mm, respectively. The maximum vertical displacement responses of the car body of the first trailer with and without cross-wind forces are 6.60 and 3.29 mm, respectively. The maximum wheel load reduction factors of the first trailer with and without cross-wind forces are 0.43 and 0.22, respectively. The maximum overturning factors of the first trailer with and without cross-wind forces are 0.28 and 0.08, respectively. The cross-wind affects the derailment factor and lateral Sperling factor of the moving train to a certain extent. However, the lateral and vertical displacement responses of rails with the crnss-wind are almost the same as those without the cross-wind. The method presented and the corresponding computer program can be used to calculate the interaction between trains and track in cross-wind.
基金the National Basic Research Program of China under Grant No.2013CB036405the Key Research Program of the Chinese Academy of Sciences under Grant No.KZZD-EW-05the Natural Science Foundation of China under Grant Nos.41402317,51209201 and 51279198
文摘The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to simulate the rails and a lower Euler beam to model the slab. Rail pads between the rails and slab are represented by a continuous layer of springs and dashpots. A series of point loads are formulated to describe the moving train loads. The governing equations of track-ground systems are solved using the double Fourier transform, and the dynamic responses in the time domain are obtained by the inverse Fourier transform. The results show that a train load with high velocity will generate a larger response in transversely isotropic saturated soil than the lower velocity load, and special attention should be paid on the pore pressure in the vicinity of the ground surface. The anisotropic parameters of a surface soil layer will have greater influence on the displacement and excess pore water pressure than those of the subsoil layer. The traditional design method taking ground soil as homogeneous isotropic soil is unsafe for the case of RE 〈 1 and RG 〈 1, so a transversely isotropic foundation model is of great significance to the design for high train velocities.
文摘By studying the slab moving in detail in the plate rolling process, the problem of slab tracking and controlling was solved by using the distributed control system. The problems of rhythm control for the big-complex system, the exchange of manual and automatic operations, the data exchange between the levelⅠ, TCS (technology control system) and levelⅡ, PCS (process control system), are solved. By this way, the automatic level of the plate production line is improved.
基金funded by the National Natural Science Foundation of China(No.51408610).
文摘Purpose–The construction of cement asphalt(CA)emulsified mortar can obviously disturb the slab status after the fine adjustment.To decrease or eliminate the influence of CA mortar grouting on track slab geometry status,the effects of grouting funnel,slab pressing method,mortar expansion ratio,seepage ratio and grouting area on China Railway Track System Type(CRTS I)track slab geometry status were discussed in this paper.Design/methodology/approach–Combined with engineering practice,this paper studied the expansion law of filling layer mortar,the liquid level height of the filling funnel,the pressure plate device and the amount of exudation water and systematically analyzed the influence of filling layer mortar construction on the state of track slab.Relevant precautions and countermeasures were put forward.Findings–The results showed that the track slab floating values of four corners were different with the CA mortar grouting and the track slab corner near CA mortar grouting hole had the maximum floating values.The anti-floating effect of“7”shaped slab pressing device was more efficient than fixed-joint angle iron,and the slab floating value could be further decreased by increasing the amount of“7”shaped slab pressing devices.After CA mortar grouting,the track slab floating pattern had a close correlation with the expansion rate and water seepage rate of CA mortar over time and the expansion and water seepage rate of the mortar were faster when the temperature was high.Furthermore,the use of strip CA mortar filling under the rail bearing platform on bothsides could effectively reduce the float under the track slab,and it could also save mortar consumption and reduce costs.Originality/value–This study plays an important role in controlling the floating values,CA mortar dosage and the building cost of projects by grouting CA mortar at two flanks of filling space.The research results have guiding significance for the design and construction of China’s CRTS I,CRTS II and CRTS III track slab.
文摘Good interlayer interface performance is the key to maintaining the stability of CRTSⅡslab ballastless track structure.In a project,the tangential cohesion parameters of CRTSⅡslab ballastless track structure are generally measured by horizontal push plate test,so as to measure the interlayer interface performance.Horizontal push plate contraction scale and full scale tests of CRTSⅡslab ballastless track structure are carried out to obtain the tangential force-displacement relation curve of the interlayer interface,thus obtaining the parameters of cohesion model.A threedimensional progressive damage analysis model for CRTSⅡslab ballastless track structure is established,the whole process inversion of the horizontal push plate test is carried out,and the reliability of the contraction scale test results is verified by means of simulation and comparative analysis of test results.The results show that the greater the tangential stiffness of the interlayer interface of the track structure,the weaker the interlayer deformation coordination capability;the more significant the non-uniformity of the interface damage,the more likely the stress concentration;the greater the fracture toughness,the less likely the disjoint in the interlayer interface of the track structure.
基金The research is financially supported by First-class Undergraduate Course Funding Project in Hunan Province-Virtual Simulation Experimental Teaching Course(Xiang Jiao Tong[2021]No.28),Hunan Engineering Teaching Team)(Xiang Jiao Tong[2019]No.370)National Experimental Teaching Center of Civil Engineering Virtual Simulation(Central South University)Open Project(202001)Education and Teaching Reform Project of Central South University(2020jy063),which is gratefully acknowledged by the authors.
文摘Virtual simulation teaching is an addendum to the experimental teaching mode of railway engineering,and the two teaching methods complement each other and merge with each other.In view of the current research,there is little discussion about the integration path of the two above.Based on the connotation and design of virtual simulation teaching,this research systematically expounds the integration of the real path and path optimization problems,and puts forward the railway engineering experimental teaching principles based on virtual simulation teaching.On the basis of this research,a virtual simulation experiment platform for vibration mechanics and its application in the floating slab vibration damping track was developed to make full use of three-dimensional modeling,virtual reality,human-computer interaction and other technologies,which can realistically simulate the vibration law and vibration damping effect of the rail transit system,and in the hope that the virtual simulation teaching can be widely used in the experimental teaching mode of railway engineering in the future.
基金Project(52425213)supported by the National Science Fund for Distinguished Young Scholars of ChinaProjects(52278461,52308467)supported by the National Natural Science Foundation of China+1 种基金Projects(2021YFF0502100,2021YFB2600900)supported by the National Key R&D Program of ChinaProject(2022JDTD0015)supported by the Sichuan Province Youth Science and Technology Innovation Team,China。
文摘The interface of slab track laid in cold regions is prone to debonding under the coupling of freeze-thaw cyclesand temperature loads.Based on the composite specimen tests,the parameters of cohesive zone model were obtained andused in a simulation model of CRTS III prefabricated slab track to study the interlayer damage.The results show that 1)the digital image correlation(DIC)technique can accurately capture the strain field changes on the interface of compositespecimens under splitting and shear loading;2)when the temperature gradient is−40℃/m−60℃/m,the interfacedamage of the slab track is minimal and presents different patterns of expansion under positive and negative temperaturegradients,each corresponding to damage of the cohesive element dominated by shear stress and normal tensile stress,respectively;3)the reduction of the elastic modulus at the concrete base after freeze-thaw inhibits interface damage andleads to a higher starting temperature gradient load,but cracking can occur on the concrete base after 150 freeze-thaws.For this reason,in the light of damage control of both the interface and concrete base,the elastic modulus of the concretebase is 54%or over that without freeze-thaw cycles.
基金Project supported by the National Natural Science Foundation of China(No.51578472)。
文摘Under repeated train-induced loads, cement and emulsified asphalt mortar(CA mortar) as a viscoelastic material has a time-dependent deformation, part of which is irreversible. This could lead to debonding between the mortar layer and the track slab. Based on the theory of viscoelasticity and the analytical method of the time hardening law(THL), the viscoelastic deformation behavior of CA mortar was studied. Using ABAQUS, we established a solid model of China railway track system(CRTS) Ⅰ prefabricated slab track, with CA mortar at different initial Young’s moduli under cyclic loading corresponding to the influence of actual train loads. The results reveal that the fitted parameters of the THL for CA mortar are suitable for describing its viscoelastic deformation. As the initial Young’s modulus increases, the strain difference before and after cyclic loading gradually decreases, and the displacement difference increases from 0.2 mm to 0.6 mm. The deformation mainly occurs at the end of a mortar layer with longitudinal distribution of about 2.5 times the fasteners’ spacing. It follows that the viscoelastic performance of CA mortar is one of the most important reasons that cause debonding underneath the track slab. Therefore, we suggest that the adverse effects of viscoelastic behavior of CA mortar should be considered when researching such deformation and damage.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB036203)the National Natural Science Foundation of China(Grant No.U1134206)+1 种基金the 111 project(Grant No.B13002)the Doctoral Fund of Ministry of Education of China(Grant No.20130009110036)
文摘Considering the CRTS-II track slab,which is commonly used in the Chinese high-speed railway system,a vehicle-track-bridge dynamic analysis method is proposed in which the vehicle subsystem equations are established by the rigid body dynamics method,the track subsystem and the bridge subsystem equations are established by the FEM,the wheel-rail contact relation is defined by the corresponding assumption in vertical direction and the Kalker linear creep theory in lateral direction.The in-span spring element is derived to model the track-bridge interaction;the equal-band-width storage is adopted to fit the track structure with multilayer uniform section beam;and the dynamic equilibrium equations are solved by the inter-history iteration method.As a case study,the response of a CRH2 high-speed train transverses a simply-supported bridge with successive 31.5m double bound pre-stress beams is simulated.The result shows that using the vehicle-track-bridge interaction model instead of the vehicle-bridge interaction model helps predict the rotation angle at beam ends and choose an economic beam vertical stiffness.
基金This work is supported by the National Key R&D Program of China(No.2021YFF0502100)the National Natural Science Foundation of China(Nos.52022085 and 52278461)+1 种基金the Sichuan Provincial Youth Science and Technology Innovation Team(No.2022JDTD0015)the Research and Development Program of China State Railway Group Co.,Ltd.(No.N2022G033),China.
文摘Subgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures.In this study,we used a static model to:(1)investigate track-subgrade frost heave and develop a dynamic model of vehicle-track-subgrade frost heave;(2)explore the transfer relation between subgrade frost heave and track structure deformation;(3)examine the characteristics of interlayer debonding;(4)study the influence of subgrade frost heave on the dynamic response of vehicles in high-speed railways in seasonally frozen regions.A Fourier series was used to fit the frost heave waveform and simulate the behavior of subgrade uneven frost heave using data collected on-site.The results show:(i)The position of frost heave significantly affects the transfer of deformation to a slab track.The largest deformation of the track slab,with the amplitude transfer ratio reaching 20%,was recorded when the frost heave occurred near the joint of the base plate.(ii)At the same frost heave amplitude,long-wave frost heave causes smaller deformation and debonding of the track structure than short-wave frost heave.In the wavelength range of 10-30 m,the main frequency of the acceleration spectral density was concentrated between 3.5 and 3.7 Hz,with larger frost heave wavelengths producing smaller superposition on the vertical acceleration of the vehicle.(ii)The maximum wheel-rail force occurs when the front bogie passes the frost heave peak,with greater frost heave amplitudes producing greater wheel-rail force.From these results,we conclude there is a clear need to control the frost heave deformation of the track to reduce the dynamic response of the vehicle and in turn improve train operatSubgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures.In this study,we used a static model to:(1)investigate track`-subgrade frost heave and develop a dynamic model of vehicle`-track`-subgrade frost heave;(2)explore the transfer relation between subgrade frost heave and track structure deformation;(3)examine the characteristics of interlayer debonding;(4)study the influence of subgrade frost heave on the dynamic response of vehicles in high-speed railways in seasonally frozen regions.A Fourier series was used to fit the frost heave waveform and simulate the behavior of subgrade uneven frost heave using data collected on-site.The results show:(i)The position of frost heave significantly affects the transfer of deformation to a slab track.The largest deformation of the track slab,with the amplitude transfer ratio reaching 20%,was recorded when the frost heave occurred near the joint of the base plate.(ii)At the same frost heave amplitude,long-wave frost heave causes smaller deformation and debonding of the track structure than short-wave frost heave.In the wavelength range of 10-30 m,the main frequency of the acceleration spectral density was concentrated between 3.5 and 3.7 Hz,with larger frost heave wavelengths producing smaller superposition on the vertical acceleration of the vehicle.(iii)The maximum wheel`-rail force occurs when the front bogie passes the frost heave peak,with greater frost heave amplitudes producing greater wheel`-rail force.From these results,we conclude there is a clear need to control the frost heave deformation of the track to reduce the dynamic response of the vehicle and in turn improve train operations.ions.
基金This work is supported by the National Natural Science Foundation of China(Nos.51978585 and 52008264)the Applied Basic Research Programs of Science and Technology Commission Foundation of Sichuan Province(No.2020YJ0214)+1 种基金the Foundation of High-speed Rail Joint Fund Key Projects of Basic Research(No.U1734207)the Foundation of National Engineering Laboratory for Digital Construction Evaluation Technology of Urban Rail Transit,China(No.2023JZ01).
文摘The extensive use of steel spring floating slab tracks has effectively addressed the challenge of alleviating the environmental vibrations induced by urban rail transit systems.However,under the combined action of train dynamic loads and complex environmental factors,problems,such as the fracture of steel spring vibration isolators and suspension vibrations induced by the uneven settlement of the base,often occur.The failure of isolator support stiffness is often hidden in its early stages and is challenging to identify by conventional detection methods.At the same time,it will aggravate the wheel-rail interaction,accelerate the deterioration of track structure,and even affect the driving safety.This study first establishes a detailed coupled train-floating slab track-foundation analytical model.Then the influence of the vibration isolator support stiffness failure on the dynamic indices of the floating slab track system response is analyzed.A set of defect identification methods that can detect the number of failed steel springs,severity of damage,and their location is proposed.Finally,an intelligent monitoring system for support stiffness of floating slab track is built by combining the density-based spatial clustering of applications with noise algorithm and statistical data analysis and is applied to a rail line in southern China.During a three-year monitoring campaign,a suspension failure and a fracture of a steel spring were each successfully detected and detailed failure information was obtained.Field investigation results were consistent with the damage identification results.After repair,the track structure dynamic response returned to the average pre-damage level and further deterioration had been arrested.The proposed damage identification methods and monitoring system provide an approach for intelligent identification of track structure support stiffness failures.