This paper present an experimental study on the RC slab-column connections with nonrectangular columns, namely cross-shaped column, T-shaped column and L-shaped column. The punching shear deformation and strength char...This paper present an experimental study on the RC slab-column connections with nonrectangular columns, namely cross-shaped column, T-shaped column and L-shaped column. The punching shear deformation and strength characteristics of slab-column connections with nonrectangular columns under punching shear load are investigated. Nine specimens with the three kinds of nonrectangular columns and two reference specimens with square columns are tested. The tested ultimate loads, deformations, and failure modes of specimens are presented and discussed. Test results reveal that the punching shear strength and ductility of the connections with nonrectangular columns are higher than those of the corresponding connections with square columns, and also prove that the application of nonrectangular columns to flat-plate structure was feasible. Based on the test results, one method of calculating punching shear strength of connections with nonrectangular columns is proposed, which conforms with the current design practice of China. The test results on the punching shear strength are compared with the predictions of the formulas proposed by codes of several different countrie; and the predictions given by ACI code and China code are found to be conservative as the reinforcement ratio is increased.展开更多
How to automatically generate three-dimensional finite element Delaunay mesh by a peifected node connection method is introduced, where nodes are generated based on existing elements, instead of independence of node c...How to automatically generate three-dimensional finite element Delaunay mesh by a peifected node connection method is introduced, where nodes are generated based on existing elements, instead of independence of node creation and elements generation in traditional node connection method. Therefore, Ihe the difficulty about how to automatically create nodes in the traditional method is overcome.展开更多
One of the fundamental properties of an ad hoc network is its connectivity. Maintaining connectivity in wireless networks is extremely difficult due to dynamic changing topology of MANETs. There are several techniques...One of the fundamental properties of an ad hoc network is its connectivity. Maintaining connectivity in wireless networks is extremely difficult due to dynamic changing topology of MANETs. There are several techniques to understand the connectivity level for a given network topology. In this paper, we examine the existing methods and discuss the issues and challenges that are still insurmountable in order to enhance the connectivity properties of wireless multi hop networks.展开更多
AIM: To examine the expression of connective tissue growth factor (CTGF), also known as CCN2, in gastric carcinoma (GC), and the correlation between the expression of CTGF, clinicopathologic features and clinical outc...AIM: To examine the expression of connective tissue growth factor (CTGF), also known as CCN2, in gastric carcinoma (GC), and the correlation between the expression of CTGF, clinicopathologic features and clinical outcomes of patients with GC. METHODS: One hundred and twenty-two GC patients were included in the present study. All patients were followed up for at least 5 years. Proteins of CTGF were detected using the Powervision two-step immunostaining method. RESULTS: Of the specimens from 122 GC patients analyzed for CTGF expression, 58 (58/122, 47.5%) had a high CTGF expression in cytoplasm of gastric carcinoma cells and 64 (64/122, 52.5%) had a low CTGF expression. Patients with a high CTGF expression showed a higher incidence of lymph node metastasis than those with a low CTGF expression (P = 0.032). Patients with a high CTGF expression had significantly lower 5-year survival rate than those with a low CTGF expression (27.6% vs 46.9%, P = 0.0178), especially those staging Ⅰ+Ⅱ+Ⅲ (35.7% vs 65.2%, P = 0.0027). CONCLUSION: GC patients with an elevated CTGF expression have more lymph node metastases and a shorter survival time. CTGF seems to be an independent prognostic factor for the successful differentiation of high-risk GC patients staging Ⅰ+Ⅱ+Ⅲ. Over-expression of CTGF in human GC cells results in an increased aggressive ability.展开更多
Failure of one or multiple critical nodes may partition wireless sensor networks into disjoint segments, and thus brings negative effect on the applications. We propose DCRS, a Distributed Connectivity Restoration Str...Failure of one or multiple critical nodes may partition wireless sensor networks into disjoint segments, and thus brings negative effect on the applications. We propose DCRS, a Distributed Connectivity Restoration Strategy to tolerate the failure of one critical node. Because of the energy restriction of sensor nodes, the energy overhead of the recovery process should be minimized to extend the lifetime of the network. To achieve it, we first design a novel algorithm to identify 2-critical nodes only relying on the positional information of 1-hop neighbors and some 2-hop neighbors, and then we present the criteria to select an appropriate backup for each critical node. Finally, we improve the cascaded node movement algorithm by determining whether a node can move to another non-adjacent node directly or not to reduce the number of nodes moved. The effectiveness of DCRS is validated through extensive simulation experiments.展开更多
The advances in recent technology have lead to the development of wireless sensor nodes forming a wireless network, which over the years is used from military application to industry, household, medical etc. The deplo...The advances in recent technology have lead to the development of wireless sensor nodes forming a wireless network, which over the years is used from military application to industry, household, medical etc. The deployment pattern of sensor nodes in Wireless Sensor Network (WSN) is always random for most of the applications. Such technique will lead to ineffective utilization of the network;for example fewer nodes are located at far distance and dense nodes are located at some reason and part of the region may be without the surveillance of any node, where the networks do consume additional energy or even may not transfer the data. The proposed work is intended to develop the optimized network by effective placement of nodes in circular and grid pattern, which we call as uniformity of nodes to be compared with random placement of nodes. Each of the nodes is in optimized positions at uniform distance with neighbors, followed by running a energy efficient routing algorithm that saves an additional energy further to provide connectivity management by connecting all the nodes. Simulation results are compared with the random placement of nodes, the residual energy of a network, lifetime of a network, energy consumption of a network shows a definite improvement for uniform network as that of with the random network.展开更多
In this paper, we study the connectivity of multihop wireless networks under the log-normal shadowing model by investigating the precise distribution of the number of isolated nodes. Under such a realistic shadowing m...In this paper, we study the connectivity of multihop wireless networks under the log-normal shadowing model by investigating the precise distribution of the number of isolated nodes. Under such a realistic shadowing model, all previous known works on the distribution of the number of isolated nodes were obtained only based on simulation studies or by ignoring the important boundary effect to avoid the challenging technical analysis, and thus cannot be applied to any practical wireless networks. It is extremely challenging to take the complicated boundary effect into consideration under such a realistic model because the transmission area of each node is an irregular region other than a circular area. Assume that the wireless nodes are represented by a Poisson point process with densitynover a unit-area disk, and that the transmission power is properly chosen so that the expected node degree of the network equals lnn + ξ (n), where ξ (n) approaches to a constant ξ as n →?∞. Under such a shadowing model with the boundary effect taken into consideration, we proved that the total number of isolated nodes is asymptotically Poisson with mean e$ {-ξ}. The Brun’s sieve is utilized to derive the precise asymptotic distribution. Our results can be used as design guidelines for any practical multihop wireless network where both the shadowing and boundary effects must be taken into consideration.展开更多
Node failure in Wireless Sensor Networks(WSNs)is a fundamental problem because WSNs operate in hostile environments.The failure of nodes leads to network partitioning that may compromise the basic operation of the sen...Node failure in Wireless Sensor Networks(WSNs)is a fundamental problem because WSNs operate in hostile environments.The failure of nodes leads to network partitioning that may compromise the basic operation of the sensor network.To deal with such situations,a rapid recovery mechanism is required for restoring inter-node connectivity.Due to the immense importance and need for a recovery mechanism,several different approaches are proposed in the literature.However,the proposed approaches have shortcomings because they do not focus on energy-efficient operation and coverage-aware mechanisms while performing connectivity restoration.Moreover,most of these approaches rely on the excessive mobility of nodes for restoration connectivity that affects both coverage and energy consumption.This paper proposes a novel technique called ECRT(Efficient Connectivity Restoration Technique).This technique is capable of restoring connectivity due to single and multiple node failures.ECRT achieves energy efficiency by transmitting a minimal number of control packets.It is also coverage-aware as it relocates minimal nodes while trying to restore connectivity.With the help of extensive simulations,it is proven that ECRT is effective in connectivity restoration for single and multiple node failures.Results also show that ECRT exchanges a much smaller number of packets than other techniques.Moreover,it also yields the least reduction in field coverage,proving its versatility for connectivity restoration.展开更多
The identification of influential nodes in complex networks is one of the most exciting topics in network science.The latest work successfully compares each node using local connectivity and weak tie theory from a new...The identification of influential nodes in complex networks is one of the most exciting topics in network science.The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective.We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale.In particular,one novel position parameter based on node transmission efficiency is proposed,which mainly depends on the shortest distances from target nodes to high-degree nodes.In this regard,the novel multi-scale information importance(MSII)method is proposed to better identify the crucial nodes by combining the network's local connectivity and global position information.In simulation comparisons,five state-of-the-art algorithms,i.e.the neighbor nodes degree algorithm(NND),betweenness centrality,closeness centrality,Katz centrality and the k-shell decomposition method,are selected to compare with our MSII.The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks.展开更多
Aiming at developing a node scheduling protocol for sensor networks with fewer active nodes,we propose a coordinated node scheduling protocol based on the presentation of a solution and its optimization to determine w...Aiming at developing a node scheduling protocol for sensor networks with fewer active nodes,we propose a coordinated node scheduling protocol based on the presentation of a solution and its optimization to determine whether a node is redundant.The proposed protocol can reduce the number of working nodes by turning off as many redundant nodes as possible without degrading the coverage and connectivity.The simulation result shows that our protocol outperforms the peer with respect to the working node number and dynamic coverage percentage.展开更多
Wireless Sensor Networks(WSNs)are an integral part of the Internet of Things(IoT)and are widely used in a plethora of applications.Typically,sensor networks operate in harsh environments where human intervention is of...Wireless Sensor Networks(WSNs)are an integral part of the Internet of Things(IoT)and are widely used in a plethora of applications.Typically,sensor networks operate in harsh environments where human intervention is often restricted,which makes battery replacement for sensor nodes impractical.Node failure due to battery drainage or harsh environmental conditions poses serious challenges to the connectivity of the network.Without a connectivity restoration mechanism,node failures ultimately lead to a network partition,which affects the basic function of the sensor network.Therefore,the research community actively concentrates on addressing and solving the challenges associated with connectivity restoration in sensor networks.Since energy is a scarce resource in sensor networks,it becomes the focus of research,and researchers strive to propose new solutions that are energy efficient.The common issue that is well studied and considered is how to increase the network’s life span by solving the node failure problem and achieving efficient energy utilization.This paper introduces a Clusterbased Node Recovery(CNR)connectivity restoration mechanism based on the concept of clustering.Clustering is a well-known mechanism in sensor networks,and it is known for its energy-efficient operation and scalability.The proposed technique utilizes a distributed cluster-based approach to identify the failed nodes,while Cluster Heads(CHs)play a significant role in the restoration of connectivity.Extensive simulations were conducted to evaluate the performance of the proposed technique and compare it with the existing techniques.The simulation results show that the proposed technique efficiently addresses node failure and restores connectivity by moving fewer nodes than other existing connectivity restoration mechanisms.The proposed mechanism also yields an improved field coverage as well as a lesser number of packets exchanged as compared to existing state-of-the-art mechanisms.展开更多
In Mobile Ad Hoc Networks(MANET),Quality of Service(QoS)is an important factor that must be analysed for the showing the better performance.The Node Quality-based Clustering Algorithm using Fuzzy-Fruit Fly Optimiza-ti...In Mobile Ad Hoc Networks(MANET),Quality of Service(QoS)is an important factor that must be analysed for the showing the better performance.The Node Quality-based Clustering Algorithm using Fuzzy-Fruit Fly Optimiza-tion for Cluster Head and Gateway Selection(NQCAFFFOCHGS)has the best network performance because it uses the Improved Weighted Clustering Algo-rithm(IWCA)to cluster the network and the FFO algorithm,which uses fuzzy-based network metrics to select the best CH and entryway.However,the major drawback of the fuzzy system was to appropriately select the membership func-tions.Also,the network metrics related to the path or link connectivity were not considered to effectively choose the CH and gateway.When learning fuzzy sets,this algorithm employs a new Continuous Action-set Learning Automata(CALA)approach that correctly modifies and chooses the fuzzy membership functions.Despite the fact that it extends the network’s lifespan,it does not assist in the detection of defective nodes in the routing route.Because of this,a new Fault Tolerance(NQCAEFFFOCHGS-FT)mechanism based on the Distributed Connectivity Restoration(DCR)mechanism is proposed,which allows the net-work to self-heal as a consequence of the algorithm’s self-healing capacity.Because of the way this method is designed,node failures may be utilised to rebuild the network topology via the use of cascaded node moves.Founded on the fractional network information and topologic overhead related with each node,the DCR is suggested as an alternative to the DCR.When compared to the NQCAFFFOCHGS algorithm,the recreation results display that the proposed NQCAEFFFOCHGS-FT algorithm improves network performance in terms of end-to-end delay,energy consumption,Packet Loss Ratio(PLR),Normalized Routing Overhead(NRO),and Balanced Load Index(BLI).展开更多
文摘This paper present an experimental study on the RC slab-column connections with nonrectangular columns, namely cross-shaped column, T-shaped column and L-shaped column. The punching shear deformation and strength characteristics of slab-column connections with nonrectangular columns under punching shear load are investigated. Nine specimens with the three kinds of nonrectangular columns and two reference specimens with square columns are tested. The tested ultimate loads, deformations, and failure modes of specimens are presented and discussed. Test results reveal that the punching shear strength and ductility of the connections with nonrectangular columns are higher than those of the corresponding connections with square columns, and also prove that the application of nonrectangular columns to flat-plate structure was feasible. Based on the test results, one method of calculating punching shear strength of connections with nonrectangular columns is proposed, which conforms with the current design practice of China. The test results on the punching shear strength are compared with the predictions of the formulas proposed by codes of several different countrie; and the predictions given by ACI code and China code are found to be conservative as the reinforcement ratio is increased.
基金This project is supported by Provincial Natural Science foundation of Guangdong!(970516)
文摘How to automatically generate three-dimensional finite element Delaunay mesh by a peifected node connection method is introduced, where nodes are generated based on existing elements, instead of independence of node creation and elements generation in traditional node connection method. Therefore, Ihe the difficulty about how to automatically create nodes in the traditional method is overcome.
文摘One of the fundamental properties of an ad hoc network is its connectivity. Maintaining connectivity in wireless networks is extremely difficult due to dynamic changing topology of MANETs. There are several techniques to understand the connectivity level for a given network topology. In this paper, we examine the existing methods and discuss the issues and challenges that are still insurmountable in order to enhance the connectivity properties of wireless multi hop networks.
文摘AIM: To examine the expression of connective tissue growth factor (CTGF), also known as CCN2, in gastric carcinoma (GC), and the correlation between the expression of CTGF, clinicopathologic features and clinical outcomes of patients with GC. METHODS: One hundred and twenty-two GC patients were included in the present study. All patients were followed up for at least 5 years. Proteins of CTGF were detected using the Powervision two-step immunostaining method. RESULTS: Of the specimens from 122 GC patients analyzed for CTGF expression, 58 (58/122, 47.5%) had a high CTGF expression in cytoplasm of gastric carcinoma cells and 64 (64/122, 52.5%) had a low CTGF expression. Patients with a high CTGF expression showed a higher incidence of lymph node metastasis than those with a low CTGF expression (P = 0.032). Patients with a high CTGF expression had significantly lower 5-year survival rate than those with a low CTGF expression (27.6% vs 46.9%, P = 0.0178), especially those staging Ⅰ+Ⅱ+Ⅲ (35.7% vs 65.2%, P = 0.0027). CONCLUSION: GC patients with an elevated CTGF expression have more lymph node metastases and a shorter survival time. CTGF seems to be an independent prognostic factor for the successful differentiation of high-risk GC patients staging Ⅰ+Ⅱ+Ⅲ. Over-expression of CTGF in human GC cells results in an increased aggressive ability.
文摘Failure of one or multiple critical nodes may partition wireless sensor networks into disjoint segments, and thus brings negative effect on the applications. We propose DCRS, a Distributed Connectivity Restoration Strategy to tolerate the failure of one critical node. Because of the energy restriction of sensor nodes, the energy overhead of the recovery process should be minimized to extend the lifetime of the network. To achieve it, we first design a novel algorithm to identify 2-critical nodes only relying on the positional information of 1-hop neighbors and some 2-hop neighbors, and then we present the criteria to select an appropriate backup for each critical node. Finally, we improve the cascaded node movement algorithm by determining whether a node can move to another non-adjacent node directly or not to reduce the number of nodes moved. The effectiveness of DCRS is validated through extensive simulation experiments.
文摘The advances in recent technology have lead to the development of wireless sensor nodes forming a wireless network, which over the years is used from military application to industry, household, medical etc. The deployment pattern of sensor nodes in Wireless Sensor Network (WSN) is always random for most of the applications. Such technique will lead to ineffective utilization of the network;for example fewer nodes are located at far distance and dense nodes are located at some reason and part of the region may be without the surveillance of any node, where the networks do consume additional energy or even may not transfer the data. The proposed work is intended to develop the optimized network by effective placement of nodes in circular and grid pattern, which we call as uniformity of nodes to be compared with random placement of nodes. Each of the nodes is in optimized positions at uniform distance with neighbors, followed by running a energy efficient routing algorithm that saves an additional energy further to provide connectivity management by connecting all the nodes. Simulation results are compared with the random placement of nodes, the residual energy of a network, lifetime of a network, energy consumption of a network shows a definite improvement for uniform network as that of with the random network.
文摘In this paper, we study the connectivity of multihop wireless networks under the log-normal shadowing model by investigating the precise distribution of the number of isolated nodes. Under such a realistic shadowing model, all previous known works on the distribution of the number of isolated nodes were obtained only based on simulation studies or by ignoring the important boundary effect to avoid the challenging technical analysis, and thus cannot be applied to any practical wireless networks. It is extremely challenging to take the complicated boundary effect into consideration under such a realistic model because the transmission area of each node is an irregular region other than a circular area. Assume that the wireless nodes are represented by a Poisson point process with densitynover a unit-area disk, and that the transmission power is properly chosen so that the expected node degree of the network equals lnn + ξ (n), where ξ (n) approaches to a constant ξ as n →?∞. Under such a shadowing model with the boundary effect taken into consideration, we proved that the total number of isolated nodes is asymptotically Poisson with mean e$ {-ξ}. The Brun’s sieve is utilized to derive the precise asymptotic distribution. Our results can be used as design guidelines for any practical multihop wireless network where both the shadowing and boundary effects must be taken into consideration.
基金This research is funded by Jouf University Saudi Arabia,under the research Project Number 40/117.URL:www.ju.edu.sa.
文摘Node failure in Wireless Sensor Networks(WSNs)is a fundamental problem because WSNs operate in hostile environments.The failure of nodes leads to network partitioning that may compromise the basic operation of the sensor network.To deal with such situations,a rapid recovery mechanism is required for restoring inter-node connectivity.Due to the immense importance and need for a recovery mechanism,several different approaches are proposed in the literature.However,the proposed approaches have shortcomings because they do not focus on energy-efficient operation and coverage-aware mechanisms while performing connectivity restoration.Moreover,most of these approaches rely on the excessive mobility of nodes for restoration connectivity that affects both coverage and energy consumption.This paper proposes a novel technique called ECRT(Efficient Connectivity Restoration Technique).This technique is capable of restoring connectivity due to single and multiple node failures.ECRT achieves energy efficiency by transmitting a minimal number of control packets.It is also coverage-aware as it relocates minimal nodes while trying to restore connectivity.With the help of extensive simulations,it is proven that ECRT is effective in connectivity restoration for single and multiple node failures.Results also show that ECRT exchanges a much smaller number of packets than other techniques.Moreover,it also yields the least reduction in field coverage,proving its versatility for connectivity restoration.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11801430,11801200,61877046,and 61877047).
文摘The identification of influential nodes in complex networks is one of the most exciting topics in network science.The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective.We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale.In particular,one novel position parameter based on node transmission efficiency is proposed,which mainly depends on the shortest distances from target nodes to high-degree nodes.In this regard,the novel multi-scale information importance(MSII)method is proposed to better identify the crucial nodes by combining the network's local connectivity and global position information.In simulation comparisons,five state-of-the-art algorithms,i.e.the neighbor nodes degree algorithm(NND),betweenness centrality,closeness centrality,Katz centrality and the k-shell decomposition method,are selected to compare with our MSII.The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks.
基金the National Natural Science Foundation of China(Grant No.60533110 and No.90604013)the Scientific Research Foundation of Harbin Institute of Technology(Grant No. HIT2002.74)
文摘Aiming at developing a node scheduling protocol for sensor networks with fewer active nodes,we propose a coordinated node scheduling protocol based on the presentation of a solution and its optimization to determine whether a node is redundant.The proposed protocol can reduce the number of working nodes by turning off as many redundant nodes as possible without degrading the coverage and connectivity.The simulation result shows that our protocol outperforms the peer with respect to the working node number and dynamic coverage percentage.
基金This research is funded by Najran University Saudi Arabia,under the research Project Number(NU/ESCI/17/093).URL:www.nu.edu.sa。
文摘Wireless Sensor Networks(WSNs)are an integral part of the Internet of Things(IoT)and are widely used in a plethora of applications.Typically,sensor networks operate in harsh environments where human intervention is often restricted,which makes battery replacement for sensor nodes impractical.Node failure due to battery drainage or harsh environmental conditions poses serious challenges to the connectivity of the network.Without a connectivity restoration mechanism,node failures ultimately lead to a network partition,which affects the basic function of the sensor network.Therefore,the research community actively concentrates on addressing and solving the challenges associated with connectivity restoration in sensor networks.Since energy is a scarce resource in sensor networks,it becomes the focus of research,and researchers strive to propose new solutions that are energy efficient.The common issue that is well studied and considered is how to increase the network’s life span by solving the node failure problem and achieving efficient energy utilization.This paper introduces a Clusterbased Node Recovery(CNR)connectivity restoration mechanism based on the concept of clustering.Clustering is a well-known mechanism in sensor networks,and it is known for its energy-efficient operation and scalability.The proposed technique utilizes a distributed cluster-based approach to identify the failed nodes,while Cluster Heads(CHs)play a significant role in the restoration of connectivity.Extensive simulations were conducted to evaluate the performance of the proposed technique and compare it with the existing techniques.The simulation results show that the proposed technique efficiently addresses node failure and restores connectivity by moving fewer nodes than other existing connectivity restoration mechanisms.The proposed mechanism also yields an improved field coverage as well as a lesser number of packets exchanged as compared to existing state-of-the-art mechanisms.
文摘In Mobile Ad Hoc Networks(MANET),Quality of Service(QoS)is an important factor that must be analysed for the showing the better performance.The Node Quality-based Clustering Algorithm using Fuzzy-Fruit Fly Optimiza-tion for Cluster Head and Gateway Selection(NQCAFFFOCHGS)has the best network performance because it uses the Improved Weighted Clustering Algo-rithm(IWCA)to cluster the network and the FFO algorithm,which uses fuzzy-based network metrics to select the best CH and entryway.However,the major drawback of the fuzzy system was to appropriately select the membership func-tions.Also,the network metrics related to the path or link connectivity were not considered to effectively choose the CH and gateway.When learning fuzzy sets,this algorithm employs a new Continuous Action-set Learning Automata(CALA)approach that correctly modifies and chooses the fuzzy membership functions.Despite the fact that it extends the network’s lifespan,it does not assist in the detection of defective nodes in the routing route.Because of this,a new Fault Tolerance(NQCAEFFFOCHGS-FT)mechanism based on the Distributed Connectivity Restoration(DCR)mechanism is proposed,which allows the net-work to self-heal as a consequence of the algorithm’s self-healing capacity.Because of the way this method is designed,node failures may be utilised to rebuild the network topology via the use of cascaded node moves.Founded on the fractional network information and topologic overhead related with each node,the DCR is suggested as an alternative to the DCR.When compared to the NQCAFFFOCHGS algorithm,the recreation results display that the proposed NQCAEFFFOCHGS-FT algorithm improves network performance in terms of end-to-end delay,energy consumption,Packet Loss Ratio(PLR),Normalized Routing Overhead(NRO),and Balanced Load Index(BLI).