Force analysis and calculation of workover string in the slanted and horizontal well are the basis of designing and checking string strength, selecting tools and determining operation parameters, which determine the o...Force analysis and calculation of workover string in the slanted and horizontal well are the basis of designing and checking string strength, selecting tools and determining operation parameters, which determine the operation safety and success of engineering accidence treatment. In this paper, by comprehensive consideration of wellbore structure, string assembly, string load and workover operation conditions, the workover string mechanical model has been built under three kinds of working states of lifting, lowering and rotating. The downhole string mechanics has been analyzed and calculated. By field verification, the string assembly, tool selection and operation parameter optimization can be achieved, which can improve the safety and success rates of workover engineering accident treatment.展开更多
文摘Force analysis and calculation of workover string in the slanted and horizontal well are the basis of designing and checking string strength, selecting tools and determining operation parameters, which determine the operation safety and success of engineering accidence treatment. In this paper, by comprehensive consideration of wellbore structure, string assembly, string load and workover operation conditions, the workover string mechanical model has been built under three kinds of working states of lifting, lowering and rotating. The downhole string mechanics has been analyzed and calculated. By field verification, the string assembly, tool selection and operation parameter optimization can be achieved, which can improve the safety and success rates of workover engineering accident treatment.
文摘为了研究平、竖曲线路段绿化植物的防眩效果,提出了平直路段防眩植物株距和高度的计算方法,并计算了不同植物冠径和防眩角条件下的株距,以及不同道路横断面和交通组成条件下的防眩植物高度.对平曲线路段,提出了改进的防眩植物株距计算方法,计算了防眩角修正值;对竖曲线路段,提出了改进的防眩植物高度计算方法,计算了凹曲线路段防眩植物高度增高值,提出了凸曲线植物下沿防眩改善措施.研究结果表明:相对平直路段,平曲线路段防眩植物株距应减小0.3~3.8 m;凹曲线路段防眩植物高度应增加0.03~0.43 m.