The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls ...The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination ofunbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.展开更多
Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Inf...Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenehuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.展开更多
砌体填充墙作为非结构构件在建筑结构抗爆分析中常被忽略,而实际爆炸事故中填充墙多发生严重破坏,从而影响爆炸波的传播及其与结构的相互作用以及结构的损伤破坏等级。基于精细化数值仿真方法评估外部爆炸作用下砌体填充墙对钢筋混凝土(...砌体填充墙作为非结构构件在建筑结构抗爆分析中常被忽略,而实际爆炸事故中填充墙多发生严重破坏,从而影响爆炸波的传播及其与结构的相互作用以及结构的损伤破坏等级。基于精细化数值仿真方法评估外部爆炸作用下砌体填充墙对钢筋混凝土(reinforced concrete,RC)框架结构损伤破坏的影响。首先,采用LS-DYNA有限元分析软件分别对典型砌体填充墙和含填充墙RC框架的近区爆炸试验进行复现,验证所采用的填充墙简化微观建模方法、材料本构模型和参数,以及任意拉格朗日欧拉爆炸荷载施加方法和爆炸波-结构流固耦合算法的适用性。进一步结合结构混合单元建模方法,开展了美国联邦应急管理署规定的普通轿车炸弹(454 kg TNT当量)在底层边柱位置爆炸下,6度、7度和8度抗震设防烈度的典型6层纯框架和含填充墙框架结构动力行为的数值仿真分析,考察了爆炸波传播路径,以及结构的动态响应、损伤破坏和抗倒塌机制。结果表明:该工况中填充墙能够有效阻挡爆炸波的传播,作用于目标柱相邻内柱上的超压峰值降低95%,减轻了内部构件的损伤程度;但同时加剧了结构迎爆面的损伤破坏,如3种抗震设防烈度的含填充墙框架目标柱柱中侧向位移较纯框架分别增加21.4%、31.1%和14.8%;不同抗震设防烈度的纯框架和含填充墙框架的顶层目标柱竖向位移基本相同,即抗震设防烈度及砌体填充墙对框架结构整体倒塌行为的影响可以忽略。展开更多
基金National Natural Science Foundation of China(NSFC)under Grant Nos.51638012 and 51578401
文摘The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination ofunbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.
基金the partial financial support from Kwang-Hua Fund for College of Civil Engineering,Tongji Universitythe National Natural Science Foundation of China(Grant No.51078274,51021140006)
文摘Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenehuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.
文摘砌体填充墙作为非结构构件在建筑结构抗爆分析中常被忽略,而实际爆炸事故中填充墙多发生严重破坏,从而影响爆炸波的传播及其与结构的相互作用以及结构的损伤破坏等级。基于精细化数值仿真方法评估外部爆炸作用下砌体填充墙对钢筋混凝土(reinforced concrete,RC)框架结构损伤破坏的影响。首先,采用LS-DYNA有限元分析软件分别对典型砌体填充墙和含填充墙RC框架的近区爆炸试验进行复现,验证所采用的填充墙简化微观建模方法、材料本构模型和参数,以及任意拉格朗日欧拉爆炸荷载施加方法和爆炸波-结构流固耦合算法的适用性。进一步结合结构混合单元建模方法,开展了美国联邦应急管理署规定的普通轿车炸弹(454 kg TNT当量)在底层边柱位置爆炸下,6度、7度和8度抗震设防烈度的典型6层纯框架和含填充墙框架结构动力行为的数值仿真分析,考察了爆炸波传播路径,以及结构的动态响应、损伤破坏和抗倒塌机制。结果表明:该工况中填充墙能够有效阻挡爆炸波的传播,作用于目标柱相邻内柱上的超压峰值降低95%,减轻了内部构件的损伤程度;但同时加剧了结构迎爆面的损伤破坏,如3种抗震设防烈度的含填充墙框架目标柱柱中侧向位移较纯框架分别增加21.4%、31.1%和14.8%;不同抗震设防烈度的纯框架和含填充墙框架的顶层目标柱竖向位移基本相同,即抗震设防烈度及砌体填充墙对框架结构整体倒塌行为的影响可以忽略。