The characteristics of the slaughterhouse effluents and current wastewater treatment practices in the province of Ontario, Canada are analyzed. Meat processing plants are found to produce large amounts of wastewater d...The characteristics of the slaughterhouse effluents and current wastewater treatment practices in the province of Ontario, Canada are analyzed. Meat processing plants are found to produce large amounts of wastewater due to the slaughtering process and cleaning of their facilities. Furthermore, the composition of the wastewater varies according to the type and number of animals slaughtered and the water requirements of the process. However, the slaughterhouse wastewater usually contains high levels of organics and nutrients. Several slaughterhouses in Ontario discharge their wastewater into the municipal sewer system after primary pretreatment at the meat processing plant. Therefore, due to the high-strength characteristics of the slaughterhouse effluents, an extensive treatment for a safe discharge into the environment is required. Thus, the combination of biological processes and advanced oxidation technologies for slaughterhouse wastewater treatment is evaluated in this study. Results show that the application of combined biological and advanced oxidation processes is recommended for on-site slaughterhouse wastewater treatment.展开更多
The discharge of slaughterhouse wastewater(SWW)is increasing and its wastewater has to be treated thoroughly to avoid the eutrophication.The hybrid zeolite-based ion-exchange and sulfur autotrophic denitrification(IX-...The discharge of slaughterhouse wastewater(SWW)is increasing and its wastewater has to be treated thoroughly to avoid the eutrophication.The hybrid zeolite-based ion-exchange and sulfur autotrophic denitrification(IX-AD)process was developed to advanced treat SWW after traditional secondary biological process.Compared with traditional sulfur oxidizing denitrification(SOD),this study found that IX-AD column showed:(1)stronger ability to resist NO_(3)^(-) pollution load,(2)lower SO_(4)^(2-) productivity,and(3)higher microbial diversity and richness.Liaoning zeolites addition guaranteed not only the standard discharge of NH_(4)^(+)-N,but also the denitrification performance and effluent TN.Especially,when the ahead secondary biological treatment process run at the ultra-high load,NO_(3)-N removal efficiency for IX-AD column was still~100%,whereas only 64.2%for control SOD column.The corresponding average effluent TN concentrations for IX-AD and SOD columns were 5.89 and 65.55 mg/L,respectively.Therefore,IX-AD is a promising technology for advanced SWW treatment and should be widely researched and popularized.展开更多
Treating protein-rich wastewater using cost-effective and simple-structured single-stage reactors presents several challenges.In this study,we applied an anaerobic sequencing batch reactor(AnSBR)to treat protein-rich ...Treating protein-rich wastewater using cost-effective and simple-structured single-stage reactors presents several challenges.In this study,we applied an anaerobic sequencing batch reactor(AnSBR)to treat protein-rich wastewater from a slaughterhouse.We focused on identifying the key factors influencing the removal of chemical oxygen demand(COD)and the settling performance of the sludge.The AnSBR achieved a maximum total COD removal of 90%,a protein degradation efficiency exceeding 80%,and a COD to methane conversion efficiency of over 70%at organic loading rates of up to 6.2 g COD L^(-1)d^(-1).We found that the variations in both the organic loading rate within the reactor and the hydraulic retention time in the buffer tank had a significant effect on COD removal.The hydraulic retention time in the buffer tank and the reactor,which determined the ammonification efficiencies and the residual carbohydrate concentrations in the reactor liquid,affected the sludge settleability.Furthermore,the genus Clostridium sensu stricto 1,known as protein-and lipids-degraders,was predominant in the reactor.Statistical analysis showed a significant correlation between the core microbiome and ammonification efficiency,highlighting the importance of protein degradation as the governing process in the treatment.Our results will provide valuable insights to optimise the design and operation of AnSBR for efficient treatment of protein-rich wastewater.展开更多
文摘The characteristics of the slaughterhouse effluents and current wastewater treatment practices in the province of Ontario, Canada are analyzed. Meat processing plants are found to produce large amounts of wastewater due to the slaughtering process and cleaning of their facilities. Furthermore, the composition of the wastewater varies according to the type and number of animals slaughtered and the water requirements of the process. However, the slaughterhouse wastewater usually contains high levels of organics and nutrients. Several slaughterhouses in Ontario discharge their wastewater into the municipal sewer system after primary pretreatment at the meat processing plant. Therefore, due to the high-strength characteristics of the slaughterhouse effluents, an extensive treatment for a safe discharge into the environment is required. Thus, the combination of biological processes and advanced oxidation technologies for slaughterhouse wastewater treatment is evaluated in this study. Results show that the application of combined biological and advanced oxidation processes is recommended for on-site slaughterhouse wastewater treatment.
基金supported by the National Key Research and Development Program of China (No.2016YFD0501405)the China Postdoctoral Science Foundation (No.2018M630245)the Beijing Postdoctoral Research Foundation (No.2017-ZZ-137).
文摘The discharge of slaughterhouse wastewater(SWW)is increasing and its wastewater has to be treated thoroughly to avoid the eutrophication.The hybrid zeolite-based ion-exchange and sulfur autotrophic denitrification(IX-AD)process was developed to advanced treat SWW after traditional secondary biological process.Compared with traditional sulfur oxidizing denitrification(SOD),this study found that IX-AD column showed:(1)stronger ability to resist NO_(3)^(-) pollution load,(2)lower SO_(4)^(2-) productivity,and(3)higher microbial diversity and richness.Liaoning zeolites addition guaranteed not only the standard discharge of NH_(4)^(+)-N,but also the denitrification performance and effluent TN.Especially,when the ahead secondary biological treatment process run at the ultra-high load,NO_(3)-N removal efficiency for IX-AD column was still~100%,whereas only 64.2%for control SOD column.The corresponding average effluent TN concentrations for IX-AD and SOD columns were 5.89 and 65.55 mg/L,respectively.Therefore,IX-AD is a promising technology for advanced SWW treatment and should be widely researched and popularized.
基金supported by Biothane Veolia Water Technologies Techno Center,KWR Water Research Institute and Hydrobusiness B.V as part of the TKI Project Innovative Slaughterhouse Wastewater Treatment TechnologyThis research was co-financed with PPS-funding from the Top consortia for Knowledge&Innovation(TKI’s)of the Dutch Ministry of Economic Affairs and Climate PolicyThe authors would like to thank China Scholarship Council for the State Scholarship Fund(No.201708450043)granted to the first author.
文摘Treating protein-rich wastewater using cost-effective and simple-structured single-stage reactors presents several challenges.In this study,we applied an anaerobic sequencing batch reactor(AnSBR)to treat protein-rich wastewater from a slaughterhouse.We focused on identifying the key factors influencing the removal of chemical oxygen demand(COD)and the settling performance of the sludge.The AnSBR achieved a maximum total COD removal of 90%,a protein degradation efficiency exceeding 80%,and a COD to methane conversion efficiency of over 70%at organic loading rates of up to 6.2 g COD L^(-1)d^(-1).We found that the variations in both the organic loading rate within the reactor and the hydraulic retention time in the buffer tank had a significant effect on COD removal.The hydraulic retention time in the buffer tank and the reactor,which determined the ammonification efficiencies and the residual carbohydrate concentrations in the reactor liquid,affected the sludge settleability.Furthermore,the genus Clostridium sensu stricto 1,known as protein-and lipids-degraders,was predominant in the reactor.Statistical analysis showed a significant correlation between the core microbiome and ammonification efficiency,highlighting the importance of protein degradation as the governing process in the treatment.Our results will provide valuable insights to optimise the design and operation of AnSBR for efficient treatment of protein-rich wastewater.