In Wireless Sensor Network(WSN),because battery and energy supply are constraints,sleep scheduling is always needed to save energy while maintaining connectivity for packet delivery.Traditional schemes have to ensure ...In Wireless Sensor Network(WSN),because battery and energy supply are constraints,sleep scheduling is always needed to save energy while maintaining connectivity for packet delivery.Traditional schemes have to ensure high duty cycling to ensure enough percentage of active nodes and then derogate the energy efficiency.This paper proposes an RFID based non-preemptive random sleep scheduling scheme with stable low duty cycle.It employs delay tolerant network routing protocol to tackle the frequent disconnections.A low-power RFID based non-preemptive wakeup signal is used to confirm the availability of next-hop before sending packet.It eliminates energy consumption of repeated retransmission of the delayed packets.Moreover,the received wakeup signal is postponed to take effect until the sleep period is finished,and the waken node then responds to the sending node to start the packet delivery.The scheme can keep stable duty cycle and then ensure energy saving effect compared with other sleeping scheduling methods.展开更多
We study random and periodic sleep schedules from the point of view of delay in detecting the target. We consider sleep schedules in which a sensor in "inactive" mode wakes up either randomly or periodically to dete...We study random and periodic sleep schedules from the point of view of delay in detecting the target. We consider sleep schedules in which a sensor in "inactive" mode wakes up either randomly or periodically to detect presence of the target within its vicinity resulting into two sleep schedules: (a) random wake-up schedule, and (b) periodic wake-up schedule respectively. Specifically, we analyse and obtain for the random wake-up schedule the expected delay in detection, and the delay, such that with probability P, the delay is less than the computed value. For the periodic wake-up schedule we show that there exists an upper bound on the delay. Further we compute the average value of delay. We have shown that the theoretically computed averages and the upper bounds on the delay match with the simulation results for the random wake-up and periodic wake-up schedules.展开更多
基金This work is supported in part by the National Natural Science Foundation of China(61871140,61572153,U1636215,61572492,61672020)the National Key research and Development Plan(Grant No.2018YFB0803504).
文摘In Wireless Sensor Network(WSN),because battery and energy supply are constraints,sleep scheduling is always needed to save energy while maintaining connectivity for packet delivery.Traditional schemes have to ensure high duty cycling to ensure enough percentage of active nodes and then derogate the energy efficiency.This paper proposes an RFID based non-preemptive random sleep scheduling scheme with stable low duty cycle.It employs delay tolerant network routing protocol to tackle the frequent disconnections.A low-power RFID based non-preemptive wakeup signal is used to confirm the availability of next-hop before sending packet.It eliminates energy consumption of repeated retransmission of the delayed packets.Moreover,the received wakeup signal is postponed to take effect until the sleep period is finished,and the waken node then responds to the sending node to start the packet delivery.The scheme can keep stable duty cycle and then ensure energy saving effect compared with other sleeping scheduling methods.
文摘We study random and periodic sleep schedules from the point of view of delay in detecting the target. We consider sleep schedules in which a sensor in "inactive" mode wakes up either randomly or periodically to detect presence of the target within its vicinity resulting into two sleep schedules: (a) random wake-up schedule, and (b) periodic wake-up schedule respectively. Specifically, we analyse and obtain for the random wake-up schedule the expected delay in detection, and the delay, such that with probability P, the delay is less than the computed value. For the periodic wake-up schedule we show that there exists an upper bound on the delay. Further we compute the average value of delay. We have shown that the theoretically computed averages and the upper bounds on the delay match with the simulation results for the random wake-up and periodic wake-up schedules.