The behavior of slender columns under the effect of eccentric loading has always taken the attention of researchers. When investigating the strengthening of reinforced concrete columns, mainly short and circular colum...The behavior of slender columns under the effect of eccentric loading has always taken the attention of researchers. When investigating the strengthening of reinforced concrete columns, mainly short and circular columns are the targeted elements. This is why the data about slender columns with rectangular sections is limited and infrequent specially when loaded eccentrically. This paper aims to increase the available experimental data in this specific area. The experimental program consisted of twenty seven specimens. The specimens were divided into three groups; one control group and two groups strengthened using two strengthening schemes. Scheme 1 implied the use of near surface mounted (NSM) longitudinal steel bars, while in scheme 2, NSM longitudinal steel bars partially wrapped with one ply of carbon fibers reinforced polymers (CFRP) sheets was used. The test specimen had an overall length of 2000 mm and a 100 x 200 mm rectangular cross section. In addition to the strengthening schemes, the test parameters included three ratios for the internal longitudinal steel bars "μ" 1%, 1.57% and 2.26%. The parameters were extended to cover three stirrups' volumetric ratio "ρv" 0.73%, 0.49% and 0.37%. The specimens were tested under the effect of eccentric loading with eccentricity-to-section height e/h equals 0.25. The research revealed that the strength gain in specimens strengthened with scheme 2 was higher than with scheme 1. Analytical modeling of the stress strain relation of the strengthened RC columns considering the effect of strengthening scheme, internal reinforcement ratio μ, and stirrups' volumetric ratio "ρv" was proposed. Verification was made using available experimental data. The proposed model showed a reasonable agreement with the experimental results.展开更多
文摘The behavior of slender columns under the effect of eccentric loading has always taken the attention of researchers. When investigating the strengthening of reinforced concrete columns, mainly short and circular columns are the targeted elements. This is why the data about slender columns with rectangular sections is limited and infrequent specially when loaded eccentrically. This paper aims to increase the available experimental data in this specific area. The experimental program consisted of twenty seven specimens. The specimens were divided into three groups; one control group and two groups strengthened using two strengthening schemes. Scheme 1 implied the use of near surface mounted (NSM) longitudinal steel bars, while in scheme 2, NSM longitudinal steel bars partially wrapped with one ply of carbon fibers reinforced polymers (CFRP) sheets was used. The test specimen had an overall length of 2000 mm and a 100 x 200 mm rectangular cross section. In addition to the strengthening schemes, the test parameters included three ratios for the internal longitudinal steel bars "μ" 1%, 1.57% and 2.26%. The parameters were extended to cover three stirrups' volumetric ratio "ρv" 0.73%, 0.49% and 0.37%. The specimens were tested under the effect of eccentric loading with eccentricity-to-section height e/h equals 0.25. The research revealed that the strength gain in specimens strengthened with scheme 2 was higher than with scheme 1. Analytical modeling of the stress strain relation of the strengthened RC columns considering the effect of strengthening scheme, internal reinforcement ratio μ, and stirrups' volumetric ratio "ρv" was proposed. Verification was made using available experimental data. The proposed model showed a reasonable agreement with the experimental results.