Performance of traditional adaptive line enhancer (ALE) in suppressing Gaussian noise is low and can get worse at low input signal-to-noise ratio(SNR). For greatly overcoming these disadvantages, feature of fourth...Performance of traditional adaptive line enhancer (ALE) in suppressing Gaussian noise is low and can get worse at low input signal-to-noise ratio(SNR). For greatly overcoming these disadvantages, feature of fourth-order cumulant (FOC) different slices for quasi-stationary random process is analyzed, fourth order cumulant(FOC) different slice-based adaptive dynamic line enhancer is presented, and output SNR of the proposed enhancer is derived and bigger than that of the ALE via theoretical analysis. Simulation tests with the underwater moving target-radiated data have shown that the proposed enhancer outperforms the ALE in suppressing Gaussian noise and enhancing dynamic line spectrum feature.展开更多
文摘Performance of traditional adaptive line enhancer (ALE) in suppressing Gaussian noise is low and can get worse at low input signal-to-noise ratio(SNR). For greatly overcoming these disadvantages, feature of fourth-order cumulant (FOC) different slices for quasi-stationary random process is analyzed, fourth order cumulant(FOC) different slice-based adaptive dynamic line enhancer is presented, and output SNR of the proposed enhancer is derived and bigger than that of the ALE via theoretical analysis. Simulation tests with the underwater moving target-radiated data have shown that the proposed enhancer outperforms the ALE in suppressing Gaussian noise and enhancing dynamic line spectrum feature.