Abstract:reconstruction method using slice im-ages is proposed. Wanting to extract the outermost contours from slice images, the method of the improved GVF-Snake model with optimized force field and ray method is emp...Abstract:reconstruction method using slice im-ages is proposed. Wanting to extract the outermost contours from slice images, the method of the improved GVF-Snake model with optimized force field and ray method is employed. And then, the 3D model is reconstructed by contour connection using the im-proved shortest diagonal method and judgment function of contour fracture. The results show that the accuracy of reconstruction 3D model is improved.展开更多
A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron micr...A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron microscope slices by Fou-rier-Bessel synthesis and electron tomography (ET), and a series of computed tomography (CT) was developed to perform si-multaneous measurement on the structure and function of biomedical samples. The paper presents the 3D reconstruction seg-mentation display and analysis results of pollen spore, chaperonin, virus, head, cervical bone, tibia and carpus. At the same time, it also puts forward some potential applications of the new technique in the biomedical realm.展开更多
The photodissociation dynamics of isocyanic acid (HNCO) has been studied by the time- sliced velocity map ion imaging technique at 193 nm. The NH(a1△) products were measured via (2+1) resonance enhanced multip...The photodissociation dynamics of isocyanic acid (HNCO) has been studied by the time- sliced velocity map ion imaging technique at 193 nm. The NH(a1△) products were measured via (2+1) resonance enhanced multiphoton ionization. Images have been accumulated for the NH(a1△) rotational states in the ground and vibrational excited state (v=0 and 1). The center-of-mass translational energy distribution derived from the NH(a1△) images implies that the CO vibrational distributions are inverted for most of the measured 1NH(v|j) internal states. The anisotropic product angular distribution observed indicates a rapid dissociation process for the N-C bond cleavage. A bimodal rotational state distribution of CO(v) has been observed, this result implies that isocyanic acid dissociates in the S1 state in two different pathways.展开更多
A recent study has revealed a full 3-dimentional reactive scattering picture of the reaction CI+CHD3(v1=1) as the C1 atoms attack CHD3 from various directions respective to the C-H stretching bond. The reported pol...A recent study has revealed a full 3-dimentional reactive scattering picture of the reaction CI+CHD3(v1=1) as the C1 atoms attack CHD3 from various directions respective to the C-H stretching bond. The reported polarization-dependent differential cross sections provide the most detailed characterization of the influences of reagent alignments on reactivity. To convey the stereo-specific information more accessible to general chemists, we show here, by proper symmetry considerations, how to retrieve from the measurements the relative integral and differential cross sections of two most common collision geometries: the end-on versus side-on attacks. The results, albeit coarse-grained, provide an appealing picture that not only reinforces our intuition about chemical reactivity, but also sheds more light on the conventional (unpolarized) attributes.展开更多
Sliced velocity mapping ion imaging technique was employed to investigate the dynamics of the hydroxyl elimination channel in the photodissociaiton of nitric acid in the ultraviolet region. The OH product was detected...Sliced velocity mapping ion imaging technique was employed to investigate the dynamics of the hydroxyl elimination channel in the photodissociaiton of nitric acid in the ultraviolet region. The OH product was detected by (2+1) resonance enhanced multiphoton ionization via the D^2∑^- electronic state. The total kinetic energy spectra of the OH+NO2 channel from the photolysis of HONO2 show that both :NO2(X2A1) and NO2(A2B2) channels are present, suggesting that both 1^1A″ and 2^1A″ excited electronic states of HONO2 are involved in the excitation. The parallel angular distributions suggest that the dissociation of the nitric acid is a fast process in comparison with the rotational period of the HNO3 molecule. The anisotropy parameter β for the hydroxyl elimination channel is found to be dependent on the OH product rotational state as well as the photolysis energy.展开更多
In the one-color experiment at 193nm, we studied the photodissociation of Si2+ ions prepared by two-photon ionization using the time-sliced ion velocity map imaging method. The Si+ imaging study shows that Si2+ dissoc...In the one-color experiment at 193nm, we studied the photodissociation of Si2+ ions prepared by two-photon ionization using the time-sliced ion velocity map imaging method. The Si+ imaging study shows that Si2+ dissociation results in two distinct channels: Si(3Pg)+Si+(2Pu) and Si(1D2)+Si+(2Pu). The main channel Si(3Pg)+Si+(2Pu)) is produced by the dissociation of the Si2+ ions in more than one energetically available excited electronic state, which are from the ionization of Si2(v=0-5). Particularly, the dissociation from the vibrationally excited Si2(v=1) shows the strongest signal. In contrast, the minor Si(1D2)+Si+(2Pu) channel is due to an avoided crossing between the two 22Πg states in the same symmetry. It has also been observed the one-photon dissociation of Si2+(X4Σg-) into Si(1D2)+Si+(2Pu) products with a large kinetic energy release.展开更多
基金Supported by National Natural Science Foundation of China(No.61272286)
文摘Abstract:reconstruction method using slice im-ages is proposed. Wanting to extract the outermost contours from slice images, the method of the improved GVF-Snake model with optimized force field and ray method is employed. And then, the 3D model is reconstructed by contour connection using the im-proved shortest diagonal method and judgment function of contour fracture. The results show that the accuracy of reconstruction 3D model is improved.
文摘A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron microscope slices by Fou-rier-Bessel synthesis and electron tomography (ET), and a series of computed tomography (CT) was developed to perform si-multaneous measurement on the structure and function of biomedical samples. The paper presents the 3D reconstruction seg-mentation display and analysis results of pollen spore, chaperonin, virus, head, cervical bone, tibia and carpus. At the same time, it also puts forward some potential applications of the new technique in the biomedical realm.
基金supported by the National Natural Science Foundation of China(No.21573227,N0.11604052)the National Science Foundation of Anhui Province of China(No.1608085QA19)+2 种基金the Natural Science Research Project of Education Department of Anhui Province of China(No.2014KJ020)the Open Foundation of State Key Laboratory(No.SKLMRDK201503,No.SKLMRD-K201611,and No.SKLMRDK201711)the Doctoral Foundation of Fuyang Normal University(No.FSB201501005)
文摘The photodissociation dynamics of isocyanic acid (HNCO) has been studied by the time- sliced velocity map ion imaging technique at 193 nm. The NH(a1△) products were measured via (2+1) resonance enhanced multiphoton ionization. Images have been accumulated for the NH(a1△) rotational states in the ground and vibrational excited state (v=0 and 1). The center-of-mass translational energy distribution derived from the NH(a1△) images implies that the CO vibrational distributions are inverted for most of the measured 1NH(v|j) internal states. The anisotropic product angular distribution observed indicates a rapid dissociation process for the N-C bond cleavage. A bimodal rotational state distribution of CO(v) has been observed, this result implies that isocyanic acid dissociates in the S1 state in two different pathways.
文摘A recent study has revealed a full 3-dimentional reactive scattering picture of the reaction CI+CHD3(v1=1) as the C1 atoms attack CHD3 from various directions respective to the C-H stretching bond. The reported polarization-dependent differential cross sections provide the most detailed characterization of the influences of reagent alignments on reactivity. To convey the stereo-specific information more accessible to general chemists, we show here, by proper symmetry considerations, how to retrieve from the measurements the relative integral and differential cross sections of two most common collision geometries: the end-on versus side-on attacks. The results, albeit coarse-grained, provide an appealing picture that not only reinforces our intuition about chemical reactivity, but also sheds more light on the conventional (unpolarized) attributes.
基金Ⅴ. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China, the Ministry of Sciences and Technology, and the Chinese Academy of Sciences.
文摘Sliced velocity mapping ion imaging technique was employed to investigate the dynamics of the hydroxyl elimination channel in the photodissociaiton of nitric acid in the ultraviolet region. The OH product was detected by (2+1) resonance enhanced multiphoton ionization via the D^2∑^- electronic state. The total kinetic energy spectra of the OH+NO2 channel from the photolysis of HONO2 show that both :NO2(X2A1) and NO2(A2B2) channels are present, suggesting that both 1^1A″ and 2^1A″ excited electronic states of HONO2 are involved in the excitation. The parallel angular distributions suggest that the dissociation of the nitric acid is a fast process in comparison with the rotational period of the HNO3 molecule. The anisotropy parameter β for the hydroxyl elimination channel is found to be dependent on the OH product rotational state as well as the photolysis energy.
基金supported by the National Natural Science Foundation of China (No.21673047, No.21327901, and No.21322309)the Shanghai Key Laboratory Foundation of Molecular Catalysis and Innovative Materialsthe Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
文摘In the one-color experiment at 193nm, we studied the photodissociation of Si2+ ions prepared by two-photon ionization using the time-sliced ion velocity map imaging method. The Si+ imaging study shows that Si2+ dissociation results in two distinct channels: Si(3Pg)+Si+(2Pu) and Si(1D2)+Si+(2Pu). The main channel Si(3Pg)+Si+(2Pu)) is produced by the dissociation of the Si2+ ions in more than one energetically available excited electronic state, which are from the ionization of Si2(v=0-5). Particularly, the dissociation from the vibrationally excited Si2(v=1) shows the strongest signal. In contrast, the minor Si(1D2)+Si+(2Pu) channel is due to an avoided crossing between the two 22Πg states in the same symmetry. It has also been observed the one-photon dissociation of Si2+(X4Σg-) into Si(1D2)+Si+(2Pu) products with a large kinetic energy release.