In this paper, a dynamic model on a rigid rotor sliding bearing system with a SFD is established. The stability and bifurcation behaviors of the system are studied. On the basis of the differential equations of fluid...In this paper, a dynamic model on a rigid rotor sliding bearing system with a SFD is established. The stability and bifurcation behaviors of the system are studied. On the basis of the differential equations of fluid momentum and mass continuity, the distribution pressure function is derived by taking oil film inertia force into consideration. Damping force, clearance excitation force, interference force of different frequencies and static load are also considered in the model. Finally, the governing equations of the stability and bifurcation behaviors of the system are solved by Floquet theory. Simulation of dynamic model shows that the rigid rotor sliding bearing system can maintain stability and exhibit a Hopf bifurcation phenomenon in a certain range.展开更多
This paper presents an experimental and numerical study to investigate the hysteretic performance of a new type of isolator consisting of shape memory alloy springs and friction bearing called an SMA spring-friction b...This paper presents an experimental and numerical study to investigate the hysteretic performance of a new type of isolator consisting of shape memory alloy springs and friction bearing called an SMA spring-friction bearing (SFB). The SFB is a sliding-type isolator with SMA devices used for the seismic protection of engineering structures. The principle of operation of the isolation bearing is introduced. In order to explore the possibility of applying SMA elements in passive seismic control devices, large diameter superelastic tension/compression NiTi SMA helical springs used in the SFB isolator were developed. Mechanical experiments of the SMA helical spring were carried out to understand its superelastic characteristics. After that, a series of quasi-static tests on a single SFB isolator prototype were conducted to measure its force-displacement relationships for different loading conditions and study the corresponding variation law of its mechanical performance. The experimental results demonstrate that the SFB exhibits full hysteretic curves, excellent energy dissipation capacity, and moderate recentering ability. Finally, a theoretical model capable of emulating the hysteretic behavior of the SMA-based isolator was then established and implemented in MATLAB software. The comparison of the numerical results with the experimental results shows the efficacy of the proposed model for simulating the response of the SFB.展开更多
A finite element model is constructed for a sliding friction bearing in a seismically isolated bridge under vertical excitation with contact/friction elements. The effects of vertical excitation on the seismic perform...A finite element model is constructed for a sliding friction bearing in a seismically isolated bridge under vertical excitation with contact/friction elements. The effects of vertical excitation on the seismic performance of a seismically isolated bridge with sliding friction bearings and different bearing friction coefficients and different stiffness levels (pier diameter) are discussed using example calculations, and the effects of excitation direction for vertical excitation on the analysis results are explored. The analysis results shows that vertical excitation has a relatively large impact on seismic performance for a seismically isolated bridge with sliding friction bearings, which should be considered when designing a seismically isolated bridge with sliding friction bearings where vertical excitation dominates.展开更多
Water lubricated guide bearings for hydro turbines and pumps are conventionally designed with multiple axial grooves to provide effectively cooling and flushing away abrasives.Due to the variety of groove configuratio...Water lubricated guide bearings for hydro turbines and pumps are conventionally designed with multiple axial grooves to provide effectively cooling and flushing away abrasives.Due to the variety of groove configuration in terms of number and size,a predication of their performance is difficult.This paper deals with an analytical procedure to investigate groove effect on load capacity,stiffness and damping for this type of bearing where it is considered as an assembly of many inclined slide bearings.The result can be applied to bearings made of hard materials combined with low bearing pressure.展开更多
Many industrial applications and experiments have shown that sliding bearings often experience fluid film whip due to nonlinear fluid film forces which can cause rotor-stator rub-impact failures. The oil-film whips ha...Many industrial applications and experiments have shown that sliding bearings often experience fluid film whip due to nonlinear fluid film forces which can cause rotor-stator rub-impact failures. The oil-film whips have attracted many studies while the water-film whips in the water lubricated sliding bearing have been little researched with the mechanism still an open problem. The dynamic fluid film forces in a water sliding bearing are investigated numerically with rotational, whirling and squeezing motions of the journal using a nonlinear model to identify the relationships between the three motions. Rotor speed-up and slow-down experiments are then conducted with the rotor system supported by a water lubricated sliding bearing to induce the water-film whirl/whip and verify the relationship. The experimental results show that the vibrations of the journal alternated between increasing and decreasing rather than continuously increasing as the rotational speed increased to twice the first critical speed, which can be explained well by the nonlinear model. The radial growth rate of the whirl motion greatly affects the whirl frequency of the journal and is responsible for the frequency lock in the water-film whip. Further analysis shows that increasing the lubricating water flow rate changes the water-film whirl/whip characteristics, reduces the first critical speed, advances the time when significant water-film whirling motion occurs, and also increases the vibration amplitude at the bearing center which may lead to the rotor-stator rub-impact. The study gives the insight into the water-film whirl and whip in the water lubricated sliding bearing.展开更多
A dynamic model of a flexible rotor-sliding bearing system ( FRSBS ) with asqueeze film damper ( SFD) is established. Considered in the model are oil film inertia force,damping farce, clearance excitation force, inter...A dynamic model of a flexible rotor-sliding bearing system ( FRSBS ) with asqueeze film damper ( SFD) is established. Considered in the model are oil film inertia force,damping farce, clearance excitation force, interference force of different frequencies and staticload, as opposed to previous research. On the basis of this model, the optimal design of the systemis deeply studied. Simulation shows that the system optimization design can effectively improve thesystem stability.展开更多
Based on the running characteristics,the experimental results show that wear particles appear on the normal running stage.The fractural characteristics of wear particles were investigated, it is found there exists a r...Based on the running characteristics,the experimental results show that wear particles appear on the normal running stage.The fractural characteristics of wear particles were investigated, it is found there exists a relation between the wear characters and bear conditions.展开更多
The study on slide stability of hydraulic structures on subbed soil was made. Using the slide test results of dragged concreting base plates on subbed soil pits, the decreased value of bearing capacity on slide after ...The study on slide stability of hydraulic structures on subbed soil was made. Using the slide test results of dragged concreting base plates on subbed soil pits, the decreased value of bearing capacity on slide after re- bound and repression influence of subbed soil was determined, and the envelope of ultimate slide shear resistance was also quantitatively determined. Due to the lack of similar mechanisms of slide stability on subbed soil and base plate of hydraulic structures, different safety coefficients for the slide stability were adopted. It was suggested to use the maximum compressive stress O'm~ of eccentric load to predict structure displacement, slide and creepy slippage of subbed soil, to determine the sliding creepy contour and limit the maximum load on subbed soil. Two hydraulic structures that had been put into operation were reviewed by this method, and the results accorded with the real conditions.展开更多
Large tanks are extensively used for storing water,petrochemicals and fuels.Since they are often cited in earthquake-prone areas,the safe and continuous operation of these important structures must be ensured even whe...Large tanks are extensively used for storing water,petrochemicals and fuels.Since they are often cited in earthquake-prone areas,the safe and continuous operation of these important structures must be ensured even when severe earthquakes occur,since their failure could have devastating financial and socio-environmental consequences.Base-isolation has been widely adopted for the efficient seismic protection of such critical facilities.However,base-isolated tanks can be located relatively close to active faults that generate strong excitations with special characteristics.Consequently,viscous dampers can be incorporated into the isolation system to reduce excessive displacement demands and to avoid overconservative isolator design.Nonetheless,only a few studies have focused on the investigation of seismic response of base-isolated liquid storage tanks in conjunction with supplemental viscous dampers.Therefore,the impact of the addition of supplemental linear viscous dampers on the seismic performance of tanks isolated by single friction pendulum devices is investigated herein.Four levels of supplemental damping are assessed and compared with respect to isolators′displacement capacity and accelerations that are transferred to the tanks.展开更多
A design procedure for improving the seismic performance of unequal-span underground structures by installing isolation devices at the top end of columns is proposed based on the seismic failure mode of frame-type und...A design procedure for improving the seismic performance of unequal-span underground structures by installing isolation devices at the top end of columns is proposed based on the seismic failure mode of frame-type underground structures and the design concept of critical support columns.A two-dimensional finite element model(FEM)for a soil-underground structure with an unequal-span interaction system was established to shed light on the effects of a complex subway station with elastic sliding bearings(ESB)and lead rubber bearings(LRB)on seismic mitigation.It was found that the stiffness and internal force distribution of the underground structure changed remarkably with the installation of isolation devices at the top end of the columns.The constraints of the beam-column joints were significantly weakened,resulting in a decrease in the overall lateral stiffness and an increase in the structural lateral displacement.The introduction of the isolation device effectively reduces the internal force and seismic damage of the frame column;however,the tensile damage to the isolation structure,such as the roof,bottom plate,and sidewall,significantly increased compared to those of the non-isolation structure.Although the relative slip of the ESB remains within a controllable range under strong earthquake excitation as well as frame columns with stable vertical support and self-restoration functions,the LRB shows a better performance during seismic failure and better lateral displacement response of the unequal-span underground structure.The analysis results provide new ideas and references for promoting the application of seismic isolation technology in underground structures.展开更多
When the sliding bearing is fixed only at the top of the middle column of the underground structure,the cracks at the side end of the middle plate should be aggravated while the seismic damage of the mid-column should...When the sliding bearing is fixed only at the top of the middle column of the underground structure,the cracks at the side end of the middle plate should be aggravated while the seismic damage of the mid-column should be alleviated.To enhance the seismic performance of the mid-plate,a new isolation design method has been mentioned while the elastic sliding bearings are set at the top of the mid-columns and between the side end of the mid-plate and the side wall at the same time.By establishing a nonlinear finite element analysis model for the static-dynamic coupling interaction system,the seismic response characteristics of the cast-in-place station structure without a sliding bearing have been analyzed and compared with those of the station structure with the sliding bearing fixed only at the top of the middle columns,and those of the station structure with sliding bearing be fixed between the mid-plate and the sidewall at the same time.The results show that the new isolation station structures suffer fewer earthquake damages at the mid-plate and mid-columns at the same time,which can improve the overall seismic performance of the subway station structure.展开更多
Optical-electronic autocollimation method is commonly used to measure straightness of precision guides in engineering application. However, the traditional fixed interval optical-electronic autocollimation method is n...Optical-electronic autocollimation method is commonly used to measure straightness of precision guides in engineering application. However, the traditional fixed interval optical-electronic autocollimation method is not suitable for measuring straightness of an air-bearing guide with a long air-bearing bush or a precision straight guide with a long slide-carriage, because the air-bearing bush and the slidecarriage are actually taken as a big bridgeboard bigger than the length of the bridgeboard with the reflector, which is about 1/4-1/2 of total length of the measured guide. If straightness is measured according to the traditional method, only a few points are sampled so that the guide straightness can not be evaluated fully or accurately. In order to solve the problem, an alterable measuring interval method is proposed for straightness measurement based on analyzing the mutual relations and effects among the tilting angle of the reflector, the length of the bridgeboard, the measuring interval and the straightness of the guide. A straightness calculation model is also developed using the method, and the errors stemming from the method proposed are introduced in brief. A precision air-bearing guide with a long air-bearing bush is measured and evaluated using the method proposed, and the actual measurement and evaluation results prove that the method is correct in theory and practical in operation. The method proposed gives an effective and flexible solution to the straightness measurement of the precision guide with long slide-carriage or air-bearing bush in application. It is an extension of the traditional optical-electronic autocollimation method for straightness measurement.展开更多
With the increased use of automotive engine start-stop systems,the numerical prediction and reduction of frictional losses in sliding bearings during starting and stopping procedures has become an important issue.In e...With the increased use of automotive engine start-stop systems,the numerical prediction and reduction of frictional losses in sliding bearings during starting and stopping procedures has become an important issue.In engineering practice,numerical simulations of sliding bearings in automotive engines are performed with statistical asperity contact models with empirical values for the necessary surface parameters.The aim of this study is to elucidate the applicability of these approaches for the prediction of friction in sliding bearings subjected to start-stop operation.For this purpose,the friction performance of sliding bearings was investigated in experiments on a test rig and in transient mixed elasto-hydrodynamic simulations in a multi-body simulation environment(mixed-EHL/MBS).In mixed-EHL/MBS,the extended Reynold’s equation with flow factors according to Patir and Cheng has been combined on the one hand with the statistical asperity contact model according to Greenwood and Tripp and on the other hand with the deterministic asperity contact model according to Herbst.The detailed comparison of simulation and experimental results clarifies that the application of statistical asperity contact models with empirical values of the necessary inputs leads to large deviations between experiment and simulation.The actual distribution and position of surface roughness,as used in deterministic contact modelling,is necessary for a reliable prediction of the frictional losses in sliding bearings during start-stop operation.展开更多
In this paper a hydrodynamic journal sliding bearing,forming with two nonparallel surfaces that the lower surface moves with a unidirectional velocity and the upper surface is stationary shaped with exponential geomet...In this paper a hydrodynamic journal sliding bearing,forming with two nonparallel surfaces that the lower surface moves with a unidirectional velocity and the upper surface is stationary shaped with exponential geometry is verified mathematically.The values of volumetric flow rate and distribution of pressure for incompressible lubricant flow between two supports in several conditions of velocity with different variables are determined.The results indicate that by increasing the amount of constant(m),the maximum oil pressure in the bearing will face an extreme decrease,and also by increasing theαcoefficient,the rate of volumetric flow rate will decrease.展开更多
A new analysis method was developed to simulate the dynamic process of a frictional heat-stress coupled field. The relationship between the frictional heat and the thermal stress was investigated for concave cylinder ...A new analysis method was developed to simulate the dynamic process of a frictional heat-stress coupled field. The relationship between the frictional heat and the thermal stress was investigated for concave cylinder contact conditions. The results show that, as a nonlinear contact problem, the frictional heat at the contact areas changes with moving velocity in both value and distribution, and that the transient frictional heat at the dynamic condition has a peak within a cycle. The dynamic process of friction heat and thermal stresses affects diffusion of the frictional effects. The result can be helpful for dynamic simulation of diffusion lubrication of elements at elevated temperatures.展开更多
文摘In this paper, a dynamic model on a rigid rotor sliding bearing system with a SFD is established. The stability and bifurcation behaviors of the system are studied. On the basis of the differential equations of fluid momentum and mass continuity, the distribution pressure function is derived by taking oil film inertia force into consideration. Damping force, clearance excitation force, interference force of different frequencies and static load are also considered in the model. Finally, the governing equations of the stability and bifurcation behaviors of the system are solved by Floquet theory. Simulation of dynamic model shows that the rigid rotor sliding bearing system can maintain stability and exhibit a Hopf bifurcation phenomenon in a certain range.
基金Beijing Natural Science Foundation under Grant No.8132024Science and Technology Development Project of Beijing Municipal Commission of Education under Grant No.KM201510016004
文摘This paper presents an experimental and numerical study to investigate the hysteretic performance of a new type of isolator consisting of shape memory alloy springs and friction bearing called an SMA spring-friction bearing (SFB). The SFB is a sliding-type isolator with SMA devices used for the seismic protection of engineering structures. The principle of operation of the isolation bearing is introduced. In order to explore the possibility of applying SMA elements in passive seismic control devices, large diameter superelastic tension/compression NiTi SMA helical springs used in the SFB isolator were developed. Mechanical experiments of the SMA helical spring were carried out to understand its superelastic characteristics. After that, a series of quasi-static tests on a single SFB isolator prototype were conducted to measure its force-displacement relationships for different loading conditions and study the corresponding variation law of its mechanical performance. The experimental results demonstrate that the SFB exhibits full hysteretic curves, excellent energy dissipation capacity, and moderate recentering ability. Finally, a theoretical model capable of emulating the hysteretic behavior of the SMA-based isolator was then established and implemented in MATLAB software. The comparison of the numerical results with the experimental results shows the efficacy of the proposed model for simulating the response of the SFB.
基金National Natural Science Foundation of China under Grant Nos.51368036 and 51108220
文摘A finite element model is constructed for a sliding friction bearing in a seismically isolated bridge under vertical excitation with contact/friction elements. The effects of vertical excitation on the seismic performance of a seismically isolated bridge with sliding friction bearings and different bearing friction coefficients and different stiffness levels (pier diameter) are discussed using example calculations, and the effects of excitation direction for vertical excitation on the analysis results are explored. The analysis results shows that vertical excitation has a relatively large impact on seismic performance for a seismically isolated bridge with sliding friction bearings, which should be considered when designing a seismically isolated bridge with sliding friction bearings where vertical excitation dominates.
文摘Water lubricated guide bearings for hydro turbines and pumps are conventionally designed with multiple axial grooves to provide effectively cooling and flushing away abrasives.Due to the variety of groove configuration in terms of number and size,a predication of their performance is difficult.This paper deals with an analytical procedure to investigate groove effect on load capacity,stiffness and damping for this type of bearing where it is considered as an assembly of many inclined slide bearings.The result can be applied to bearings made of hard materials combined with low bearing pressure.
基金Supported by Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120002110011)State Key Laboratory of Hydroscience and Engineering(Grant No.2014-KY-05)+1 种基金Tsinghua Scholarship for Overseas Graduate Studies,China(Grant No.2013128)Special Funds for Marine Renewable Engergy Projects(Grant No.GHME2012GC02)
文摘Many industrial applications and experiments have shown that sliding bearings often experience fluid film whip due to nonlinear fluid film forces which can cause rotor-stator rub-impact failures. The oil-film whips have attracted many studies while the water-film whips in the water lubricated sliding bearing have been little researched with the mechanism still an open problem. The dynamic fluid film forces in a water sliding bearing are investigated numerically with rotational, whirling and squeezing motions of the journal using a nonlinear model to identify the relationships between the three motions. Rotor speed-up and slow-down experiments are then conducted with the rotor system supported by a water lubricated sliding bearing to induce the water-film whirl/whip and verify the relationship. The experimental results show that the vibrations of the journal alternated between increasing and decreasing rather than continuously increasing as the rotational speed increased to twice the first critical speed, which can be explained well by the nonlinear model. The radial growth rate of the whirl motion greatly affects the whirl frequency of the journal and is responsible for the frequency lock in the water-film whip. Further analysis shows that increasing the lubricating water flow rate changes the water-film whirl/whip characteristics, reduces the first critical speed, advances the time when significant water-film whirling motion occurs, and also increases the vibration amplitude at the bearing center which may lead to the rotor-stator rub-impact. The study gives the insight into the water-film whirl and whip in the water lubricated sliding bearing.
文摘A dynamic model of a flexible rotor-sliding bearing system ( FRSBS ) with asqueeze film damper ( SFD) is established. Considered in the model are oil film inertia force,damping farce, clearance excitation force, interference force of different frequencies and staticload, as opposed to previous research. On the basis of this model, the optimal design of the systemis deeply studied. Simulation shows that the system optimization design can effectively improve thesystem stability.
文摘Based on the running characteristics,the experimental results show that wear particles appear on the normal running stage.The fractural characteristics of wear particles were investigated, it is found there exists a relation between the wear characters and bear conditions.
文摘The study on slide stability of hydraulic structures on subbed soil was made. Using the slide test results of dragged concreting base plates on subbed soil pits, the decreased value of bearing capacity on slide after re- bound and repression influence of subbed soil was determined, and the envelope of ultimate slide shear resistance was also quantitatively determined. Due to the lack of similar mechanisms of slide stability on subbed soil and base plate of hydraulic structures, different safety coefficients for the slide stability were adopted. It was suggested to use the maximum compressive stress O'm~ of eccentric load to predict structure displacement, slide and creepy slippage of subbed soil, to determine the sliding creepy contour and limit the maximum load on subbed soil. Two hydraulic structures that had been put into operation were reviewed by this method, and the results accorded with the real conditions.
文摘Large tanks are extensively used for storing water,petrochemicals and fuels.Since they are often cited in earthquake-prone areas,the safe and continuous operation of these important structures must be ensured even when severe earthquakes occur,since their failure could have devastating financial and socio-environmental consequences.Base-isolation has been widely adopted for the efficient seismic protection of such critical facilities.However,base-isolated tanks can be located relatively close to active faults that generate strong excitations with special characteristics.Consequently,viscous dampers can be incorporated into the isolation system to reduce excessive displacement demands and to avoid overconservative isolator design.Nonetheless,only a few studies have focused on the investigation of seismic response of base-isolated liquid storage tanks in conjunction with supplemental viscous dampers.Therefore,the impact of the addition of supplemental linear viscous dampers on the seismic performance of tanks isolated by single friction pendulum devices is investigated herein.Four levels of supplemental damping are assessed and compared with respect to isolators′displacement capacity and accelerations that are transferred to the tanks.
基金the research funding provided by the National Natural Science Foundation of China(NSFC,No.51978333)the SINOMACH Science and Technology Major Project(SINOMAST-ZDZX-2020-03)。
文摘A design procedure for improving the seismic performance of unequal-span underground structures by installing isolation devices at the top end of columns is proposed based on the seismic failure mode of frame-type underground structures and the design concept of critical support columns.A two-dimensional finite element model(FEM)for a soil-underground structure with an unequal-span interaction system was established to shed light on the effects of a complex subway station with elastic sliding bearings(ESB)and lead rubber bearings(LRB)on seismic mitigation.It was found that the stiffness and internal force distribution of the underground structure changed remarkably with the installation of isolation devices at the top end of the columns.The constraints of the beam-column joints were significantly weakened,resulting in a decrease in the overall lateral stiffness and an increase in the structural lateral displacement.The introduction of the isolation device effectively reduces the internal force and seismic damage of the frame column;however,the tensile damage to the isolation structure,such as the roof,bottom plate,and sidewall,significantly increased compared to those of the non-isolation structure.Although the relative slip of the ESB remains within a controllable range under strong earthquake excitation as well as frame columns with stable vertical support and self-restoration functions,the LRB shows a better performance during seismic failure and better lateral displacement response of the unequal-span underground structure.The analysis results provide new ideas and references for promoting the application of seismic isolation technology in underground structures.
基金financially supported by the National Natural Science Foundation of China(Nos.51778290,51978333)。
文摘When the sliding bearing is fixed only at the top of the middle column of the underground structure,the cracks at the side end of the middle plate should be aggravated while the seismic damage of the mid-column should be alleviated.To enhance the seismic performance of the mid-plate,a new isolation design method has been mentioned while the elastic sliding bearings are set at the top of the mid-columns and between the side end of the mid-plate and the side wall at the same time.By establishing a nonlinear finite element analysis model for the static-dynamic coupling interaction system,the seismic response characteristics of the cast-in-place station structure without a sliding bearing have been analyzed and compared with those of the station structure with the sliding bearing fixed only at the top of the middle columns,and those of the station structure with sliding bearing be fixed between the mid-plate and the sidewall at the same time.The results show that the new isolation station structures suffer fewer earthquake damages at the mid-plate and mid-columns at the same time,which can improve the overall seismic performance of the subway station structure.
基金This project is supported by National Natural Science Foundation of China (No.50175081).
文摘Optical-electronic autocollimation method is commonly used to measure straightness of precision guides in engineering application. However, the traditional fixed interval optical-electronic autocollimation method is not suitable for measuring straightness of an air-bearing guide with a long air-bearing bush or a precision straight guide with a long slide-carriage, because the air-bearing bush and the slidecarriage are actually taken as a big bridgeboard bigger than the length of the bridgeboard with the reflector, which is about 1/4-1/2 of total length of the measured guide. If straightness is measured according to the traditional method, only a few points are sampled so that the guide straightness can not be evaluated fully or accurately. In order to solve the problem, an alterable measuring interval method is proposed for straightness measurement based on analyzing the mutual relations and effects among the tilting angle of the reflector, the length of the bridgeboard, the measuring interval and the straightness of the guide. A straightness calculation model is also developed using the method, and the errors stemming from the method proposed are introduced in brief. A precision air-bearing guide with a long air-bearing bush is measured and evaluated using the method proposed, and the actual measurement and evaluation results prove that the method is correct in theory and practical in operation. The method proposed gives an effective and flexible solution to the straightness measurement of the precision guide with long slide-carriage or air-bearing bush in application. It is an extension of the traditional optical-electronic autocollimation method for straightness measurement.
基金This work was funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-GRK 1856.
文摘With the increased use of automotive engine start-stop systems,the numerical prediction and reduction of frictional losses in sliding bearings during starting and stopping procedures has become an important issue.In engineering practice,numerical simulations of sliding bearings in automotive engines are performed with statistical asperity contact models with empirical values for the necessary surface parameters.The aim of this study is to elucidate the applicability of these approaches for the prediction of friction in sliding bearings subjected to start-stop operation.For this purpose,the friction performance of sliding bearings was investigated in experiments on a test rig and in transient mixed elasto-hydrodynamic simulations in a multi-body simulation environment(mixed-EHL/MBS).In mixed-EHL/MBS,the extended Reynold’s equation with flow factors according to Patir and Cheng has been combined on the one hand with the statistical asperity contact model according to Greenwood and Tripp and on the other hand with the deterministic asperity contact model according to Herbst.The detailed comparison of simulation and experimental results clarifies that the application of statistical asperity contact models with empirical values of the necessary inputs leads to large deviations between experiment and simulation.The actual distribution and position of surface roughness,as used in deterministic contact modelling,is necessary for a reliable prediction of the frictional losses in sliding bearings during start-stop operation.
文摘In this paper a hydrodynamic journal sliding bearing,forming with two nonparallel surfaces that the lower surface moves with a unidirectional velocity and the upper surface is stationary shaped with exponential geometry is verified mathematically.The values of volumetric flow rate and distribution of pressure for incompressible lubricant flow between two supports in several conditions of velocity with different variables are determined.The results indicate that by increasing the amount of constant(m),the maximum oil pressure in the bearing will face an extreme decrease,and also by increasing theαcoefficient,the rate of volumetric flow rate will decrease.
基金Supported by the National Natural Science Foundation of China (No. 50275110)
文摘A new analysis method was developed to simulate the dynamic process of a frictional heat-stress coupled field. The relationship between the frictional heat and the thermal stress was investigated for concave cylinder contact conditions. The results show that, as a nonlinear contact problem, the frictional heat at the contact areas changes with moving velocity in both value and distribution, and that the transient frictional heat at the dynamic condition has a peak within a cycle. The dynamic process of friction heat and thermal stresses affects diffusion of the frictional effects. The result can be helpful for dynamic simulation of diffusion lubrication of elements at elevated temperatures.