针对野外复杂环境下车式机器人常受动力学扰动影响,仅从运动学角度难以实现高性能机器人编队及轨迹跟踪控制的问题,提出一种数据驱动的动力学内环电机控制设计方法。将电机及减速机构看作整体,采用输入输出数据实时辨识动力学模型参数,...针对野外复杂环境下车式机器人常受动力学扰动影响,仅从运动学角度难以实现高性能机器人编队及轨迹跟踪控制的问题,提出一种数据驱动的动力学内环电机控制设计方法。将电机及减速机构看作整体,采用输入输出数据实时辨识动力学模型参数,对动力学内环进行特征建模,针对数据驱动的二阶离散动力学系统模型,设计离散滑模控制器并进行稳定性分析。在微软公司基于物理引擎的机器人仿真平台Microsoft Robotics Developer Studio 4(MRDS4)进行仿真对比,并将仿真数据导入MATLAB进行分析,通过仿真验证所设计控制方法的整体有效性,在扰动力矩影响较大的野外复杂环境中仍能使机器人保持较快的动态响应速度,在编队中快速响应队形的切换跟踪。展开更多
文摘针对野外复杂环境下车式机器人常受动力学扰动影响,仅从运动学角度难以实现高性能机器人编队及轨迹跟踪控制的问题,提出一种数据驱动的动力学内环电机控制设计方法。将电机及减速机构看作整体,采用输入输出数据实时辨识动力学模型参数,对动力学内环进行特征建模,针对数据驱动的二阶离散动力学系统模型,设计离散滑模控制器并进行稳定性分析。在微软公司基于物理引擎的机器人仿真平台Microsoft Robotics Developer Studio 4(MRDS4)进行仿真对比,并将仿真数据导入MATLAB进行分析,通过仿真验证所设计控制方法的整体有效性,在扰动力矩影响较大的野外复杂环境中仍能使机器人保持较快的动态响应速度,在编队中快速响应队形的切换跟踪。