期刊文献+
共找到17,070篇文章
< 1 2 250 >
每页显示 20 50 100
Stability analysis of a liquid crystal elastomer self-oscillator under a linear temperature field
1
作者 Haiyang WU Jiangfeng LOU +2 位作者 Biao ZHANG Yuntong DAI Kai LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期337-354,共18页
Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for ... Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials. 展开更多
关键词 SELF-OSCILLATION stability analysis multi-scale method liquid crystal elastomer linear temperature field
下载PDF
Inverse reliability analysis and design for tunnel face stability considering soil spatial variability
2
作者 Zheming Zhang Jian Ji +1 位作者 Xiangfeng Guo Siang Huat Goh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1552-1564,共13页
The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of ran... The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata. 展开更多
关键词 Limit analysis Tunnel face stability Spatial variability HLRF algorithm Inverse reliability method
下载PDF
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas
3
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification Kinematic analysis Slope stability Himalayan road Static and dynamic conditions
下载PDF
Stability analysis of loose accumulation slopes under rainfall:case study of a high‑speed railway in Southwest China
4
作者 Xin Wang Qian Su +2 位作者 Zongyu Zhang Feihu Huang Chenfang He 《Railway Engineering Science》 EI 2024年第1期95-106,共12页
The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce... The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce adverse geological disasters under rainfall conditions.To ensure the smooth construction of the high-speed railway and the subsequent safe operation,it is necessary to master the stability evolution process of the loose accumulation slope under rainfall.This article simulates rainfall using the finite element analysis software’s hydromechanical coupling module.The slope stability under various rainfall situations is calculated and analysed based on the strength reduction method.To validate the simulation results,a field monitoring system is established to study the deformation characteristics of the slope under rainfall.The results show that rainfall duration is the key factor affecting slope stability.Given a constant amount of rainfall,the stability of the slope decreases with increasing duration of rainfall.Moreover,when the amount and duration of rainfall are constant,continuous rainfall has a greater impact on slope stability than intermittent rainfall.The setting of the field retaining structures has a significant role in improving slope stability.The field monitoring data show that the slope is in the initial deformation stage and has good stability,which verifies the rationality of the numerical simulation method.The research results can provide some references for understanding the influence of rainfall on the stability of loose accumulation slopes along high-speed railways and establishing a monitoring system. 展开更多
关键词 High-speed railway Loose accumulation slope Slope stability analysis Rainfall effect Strength reduction
下载PDF
A vector sum analysis method for stability evolution of expansive soil slope considering shear zone damage softening
5
作者 Junbiao Yan Lingwei Kong +1 位作者 Cheng Chen Mingwei Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3746-3759,共14页
Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons... Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior. 展开更多
关键词 Expansive soil slope stability analysis Ring shear test Vector sum method Damage model Strain softening
下载PDF
Research on the Stability Analysis Method of DC Microgrid Based on Bifurcation and Strobe Theory
6
作者 Wei Chen Nan Qiu Xusheng Yang 《Energy Engineering》 EI 2024年第4期987-1005,共19页
During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model... During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model of a DC microgrid,study the effects of the converter sag coefficient,input voltage,and load resistance on the microgrid stability,and reveal the oscillation mechanism of a DC microgrid caused by a single source.Then,a DC microgrid stability analysis method based on the combination of bifurcation and strobe is used to analyze how the aforementioned parameters influence the oscillation characteristics of the system.Finally,the stability region of the system is obtained by the Jacobi matrix eigenvalue method.Grid simulation verifies the feasibility and effectiveness of the proposed method. 展开更多
关键词 DC microgrid BIFURCATION nonlinear dynamics stability analysis oscillation characteristics
下载PDF
Reliability analysis of slope stability by neural network,principal component analysis,and transfer learning techniques
7
作者 Sheng Zhang Li Ding +3 位作者 Menglong Xie Xuzhen He Rui Yang Chenxi Tong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4034-4045,共12页
The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-dema... The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-demanding.To assess the slope stability problems with a more desirable computational effort,many machine learning(ML)algorithms have been proposed.However,most ML-based techniques require that the training data must be in the same feature space and have the same distribution,and the model may need to be rebuilt when the spatial distribution changes.This paper presents a new ML-based algorithm,which combines the principal component analysis(PCA)-based neural network(NN)and transfer learning(TL)techniques(i.e.PCAeNNeTL)to conduct the stability analysis of slopes with different spatial distributions.The Monte Carlo coupled with finite element simulation is first conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of soils from eight slopes with the same geometry.The PCA method is incorporated into the neural network algorithm(i.e.PCA-NN)to increase the computational efficiency by reducing the input variables.It is found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given slope in terms of the computational accuracy and computational effort when compared with the other two algorithms(i.e.NN and decision trees,DT).Furthermore,the PCAeNNeTL algorithm shows great potential in assessing the stability of slope even with fewer training data. 展开更多
关键词 Slope stability analysis Monte Carlo simulation Neural network(NN) Transfer learning(TL)
下载PDF
Auto-parametric resonance of a continuous-beam-bridge model under two-point periodic excitation:an experimental investigation and stability analysis
8
作者 Li Yuchun Shen Chao +1 位作者 Liu Wei Li Dong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期445-454,共10页
The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the ... The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed. 展开更多
关键词 auto-parametric resonance continuous beam bridge model two-point excitation experimental investigation stability analysis vibration of Volgograd Bridge
下载PDF
Two-dimensional face stability analysis in rock masses governed by the Hoek-Brown strength criterion with a new multi-horn mechanism 被引量:2
9
作者 Junhao Zhong Xiaoli Yang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期963-976,共14页
The face stability problem is a major concern for tunnels excavated in rock masses governed by the Hoek-Brown strength criterion.To provide an accurate prediction for the theoretical solution of the critical face pres... The face stability problem is a major concern for tunnels excavated in rock masses governed by the Hoek-Brown strength criterion.To provide an accurate prediction for the theoretical solution of the critical face pressure,this study adopts the piecewise linear method(PLM)to account for the nonlinearity of the strength envelope and proposes a new multi-horn rotational mechanism based on the Hoek-Brown strength criterion and the associative flow rule.The analytical solution of critical support pressure is derived from the energy-work balance equation in the framework of the plastic limit theorem;it is formulated as a multivariable nonlinear optimization problem relying on 2m dependent variables(m is the number of segments).Meanwhile,two classic linearized measures,the generalized tangential technique(GTT)and equivalent Mohr-Coulomb parameters method(EMM),are incorporated into the analysis for comparison.Surprisingly,the parametric study indicates a significant improvement in support pressure by up to 13%compared with the GTT,and as expected,the stability of the tunnel face is greatly influenced by the rock strength parameters.The stress distribution on the rupture surface is calculated to gain an intuitive understanding of the failure at the limit state.Although the limit analysis is incapable of calculating the true stress distribution in rock masses,a rough approximation of the stress vector on the rupture surface is permitted.In the end,sets of normalized face pressure are provided in the form of charts for a quick assessment of face stability in rock masses. 展开更多
关键词 Face stability Piecewise linear method Hoek-Brown strength criterion Multi-horn rotational mechanism Limit analysis
下载PDF
Robust Stability Analysis of Smith Predictor Based Interval Fractional-Order Control Systems:A Case Study in Level Control Process
10
作者 Majid Ghorbani Mahsan Tavakoli-Kakhki +1 位作者 Aleksei Tepljakov Eduard Petlenkov 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第3期762-780,共19页
The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertaint... The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertainties are a type of parametric uncertainties that cannot be avoided when modeling real-world plants.Also,in the considered Smith predictor control structure it is supposed that the controller is a fractional-order proportional integral derivative(FOPID)controller.To the best of the authors'knowledge,no method has been developed until now to analyze the robust stability of a Smith predictor based fractional-order control system in the presence of the simultaneous uncertainties in gain,time-constants,and time delay.The three primary contributions of this study are as follows:ⅰ)a set of necessary and sufficient conditions is constructed using a graphical method to examine the robust stability of a Smith predictor-based fractionalorder control system—the proposed method explicitly determines whether or not the FOPID controller can robustly stabilize the Smith predictor-based fractional-order control system;ⅱ)an auxiliary function as a robust stability testing function is presented to reduce the computational complexity of the robust stability analysis;andⅲ)two auxiliary functions are proposed to achieve the control requirements on the disturbance rejection and the noise reduction.Finally,four numerical examples and an experimental verification are presented in this study to demonstrate the efficacy and significance of the suggested technique. 展开更多
关键词 Interval uncertainty FOPID controller fractional-order systems robust stability analysis smith predictor
下载PDF
Sensitivity analysis of factors affecting gravity dam anti-sliding stability along a foundation surface using Sobol method
11
作者 Bo Xu Shi-da Wang 《Water Science and Engineering》 EI CAS CSCD 2023年第4期399-407,共9页
The anti-sliding stability of a gravity dam along its foundation surface is a key problem in the design of gravity dams.In this study,a sensitivity analysis framework was proposed for investigating the factors affecti... The anti-sliding stability of a gravity dam along its foundation surface is a key problem in the design of gravity dams.In this study,a sensitivity analysis framework was proposed for investigating the factors affecting gravity dam anti-sliding stability along the foundation surface.According to the design specifications,the loads and factors affecting the stability of a gravity dam were comprehensively selected.Afterwards,the sensitivity of the factors was preliminarily analyzed using the Sobol method with Latin hypercube sampling.Then,the results of the sensitivity analysis were verified with those obtained using the Garson method.Finally,the effects of different sampling methods,probability distribution types of factor samples,and ranges of factor values on the analysis results were evaluated.A case study of a typical gravity dam in Yunnan Province of China showed that the dominant factors affecting the gravity dam anti-sliding stability were the anti-shear cohesion,upstream and downstream water levels,anti-shear friction coefficient,uplift pressure reduction coefficient,concrete density,and silt height.Choice of sampling methods showed no significant effect,but the probability distribution type and the range of factor values greatly affected the analysis results.Therefore,these two elements should be sufficiently considered to improve the reliability of the dam anti-sliding stability analysis. 展开更多
关键词 Gravity dam Anti-sliding stability Sensitivity analysis Sobol method Latin hypercube sampling
下载PDF
UAV-mounted Ground Penetrating Radar: an example for the stability analysis of a mountain rock debris slope
12
作者 Riccardo SALVINI Luisa BELTRAMONE +5 位作者 Vivien DE LUCIA Andrea ERMINI Claudio VANNESCHI Caterina ZEI Daniele SILVESTRI Andrea RINDINELLA 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2804-2821,共18页
This paper describes scientific research conducted to highlight the potential of an integrated GPR-UAV system in engineering-geological applications.The analysis focused on the stability of a natural scree slope in th... This paper describes scientific research conducted to highlight the potential of an integrated GPR-UAV system in engineering-geological applications.The analysis focused on the stability of a natural scree slope in the Germanasca Valley,in the western Italian Alps.As a consequence of its steep shape and the related geological hazard,the study used different remote sensed methodologies such as UAV photogrammetry and geophysics survey by a GPR-drone integrated system.Furthermore,conventional in-situ surveys led to the collection of geological and geomorphological data.The use of the UAV-mounted GPR allowed us to investigate the bedrock depth under the detrital slope deposit,using a non-invasive technique able to conduct surveys on inaccessible areas prone to hazardous conditions for operators.The collected evidence and the results of the analysis highlighted the stability of the slope with Factors of Safety,verified in static conditions(i.e.,natural static condition and static condition with snow cover),slightly above the stability limit value of 1.On the contrary,the dynamic loading conditions(i.e.,seismic action applied)showed a Factor of Safety below the stability limit value.The UAV-mounted GPR represented an essential contribution to the surveys allowing the definition of the interface debris deposit-bedrock,which are useful to design the slope model and to evaluate the scree slope stability in different conditions. 展开更多
关键词 GroundPenetrating Radar(GPR) Unmanned AerialVehicle e(UAV) GPR-drone integrated system Slope stability analysis Static and dynamic loading conditions
下载PDF
Comprehensive Analysis Method of Slope Stability Based on the Limit Equilibrium and Finite Element Methods and Its Application
13
作者 Yajun Wang Yifeng Li Jinzhou Chen 《Open Journal of Civil Engineering》 2023年第4期555-571,共17页
To study the safety and stability of large slopes, taking the right side slope of the Yuxi’an tunnel of the Yuchu Expressway Bridge in Yunnan Province as an example, limit equilibrium and finite element analysis were... To study the safety and stability of large slopes, taking the right side slope of the Yuxi’an tunnel of the Yuchu Expressway Bridge in Yunnan Province as an example, limit equilibrium and finite element analysis were applied to engineering examples to calculate the stability coefficient of the slope before and after excavation in the natural state. After comparative analysis, it was concluded that the former had a clear mechanical model and concept, which could quickly provide stability results;the latter could accurately determine the sliding surface of the slope and simulate the stress state changes of the rock and soil mass. The stability coefficients calculated by the two methods were within the stable range, but their values were different. On this basis, combined with the calculation principles, advantages and disadvantages of the two methods, a comprehensive analysis method of slope stability based on the limit equilibrium and finite element methods was proposed, and the rationality of the stability coefficient calculated by this method was judged for a slope case. 展开更多
关键词 Slope Body Excavation Mechanical Model Sliding Surface Coefficient of stability Calculation Principle Comprehensive analysis Method
下载PDF
Predicting pillar stability for underground mine using Fisher discriminant analysis and SVM methods 被引量:16
14
作者 周健 李夕兵 +2 位作者 史秀志 魏威 吴帮标 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2734-2743,共10页
The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability ... The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines. 展开更多
关键词 underground mine pillar stability Fisher discriminant analysis (FDA) support vector machines (SVMs) PREDICTION
下载PDF
Analysis of stability and bullwhip effect in production-inventory systems 被引量:5
15
作者 张冲 王海燕 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期101-106,共6页
To discuss the relationship between stability and bullwhip effect in the supply chain system,a basic model in a production-inventory control system is developed using difference equations.Z-transform techniques are ap... To discuss the relationship between stability and bullwhip effect in the supply chain system,a basic model in a production-inventory control system is developed using difference equations.Z-transform techniques are applied to investigate the production ordering and inventory dynamics.For the two operational regimes of sufficient inventory coverage and insufficient inventory coverage,the scope of decision parameters which make the system stable or instable is investigated.Under two operational regimes and the actual system,production release rates,stability/instability and bullwhip effect in the stable region and instable region are examined based on different demand functions,and then the numerical simulation results are given.The results show that reasonable choices of fractional adjustment of inventory and supply line can make the system stable and decrease bullwhip effect.It is summarized that the piecewise linearization based on the stability analysis approach is a valid approximation to the analysis of production-inventory ordering systems with nonlinearities.Some interesting results are obtained and they have important implications for improving inventory and order decisions in supply chain systems. 展开更多
关键词 production-inventory systems stability analysis bullwhip effect Z-TRANSFORM
下载PDF
Comparison of Several Statistical Analysis Models for Genotypic Stability of Saccharum officinarum 被引量:1
16
作者 陈勇生 邓海华 +3 位作者 刘福业 潘方胤 吴文龙 黄振豪 《Agricultural Science & Technology》 CAS 2012年第1期4-8,12,共6页
[Objective] The study aimed to compare several statistical analysis models for estimating the sugarcane (Saccharum spp.) genotypic stability. [Method] The data of sugarcane regional trials in Guangdong, in 2009 was ... [Objective] The study aimed to compare several statistical analysis models for estimating the sugarcane (Saccharum spp.) genotypic stability. [Method] The data of sugarcane regional trials in Guangdong, in 2009 was analyzed by three models respectively: Finlay and Wilkinson model: the additive main effects and multiplicative interaction (AMMI) model and linear regression-principal components analysis (LR- PCA) model, so as to compare the models. [Result] The Finlay and Wilkinson model was easier, but the analysis of the other two models was more comprehensive, and there was a bit difference between the additive main effects and multiplicative inter- action (AMMI) model and linear regression-principal components analysis (LR-PCA) model. [Conclusion] In practice, while the proper statistical method was usually con- sidered according to the different data, it should be also considered that the same data should be analyzed with different statistical methods in order to get a more reasonable result by comparison. 展开更多
关键词 SUGARCANE Regional trial Genotypic stability Statistical analysis
下载PDF
Seismic-induced surficial failure of cohesive slopes using three-dimensional limit analysis:A case study of the Wangjiayan landslide in Beichuan, China
17
作者 Gao Yufeng Liu Yang +1 位作者 Geng Weijuan Zhang Fei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期537-545,共9页
A seismic-induced landslide is a common geological catastrophe that occurs in nature.The Wangjiayan landslide,which was triggered by the Wenchuan earthquake,is a typical case in point.The Wanjiayan landslide caused ma... A seismic-induced landslide is a common geological catastrophe that occurs in nature.The Wangjiayan landslide,which was triggered by the Wenchuan earthquake,is a typical case in point.The Wanjiayan landslide caused many casualties and resulted in enormous property loss.This study constructs a simple surficial failure model based on the upper bound approach of three-dimensional(3D)limit analysis to evaluate the slope stability of the Wangjiayan case,while a traditional two-dimensional(2D)analysis is also conducted as a reference for comparison with the results of the 3D analysis.A quasi-static calculation is used to study the effect of the earthquake in terms of horizontal ground acceleration,while a parametric study is conducted to evaluate the critical cohesion of slopes.Rather than employing a 3D analysis,using the 2D analysis yields an underestimation regarding the safety factor.In the Wangjiayan landslide,the difference in the factors of safety between the 3D and 2D analyses can reach 20%.The sliding surface morphology as determined by the 3D method is similar to actual morphology,and the parameters of both are also compared to analyze the reliability of the proposed 3D method. 展开更多
关键词 LANDSLIDE Wenchuan earthquake surficial failure limit analysis stability QUASI-STATIC
下载PDF
Impact of spatially varying rock disturbance on rock slope stability
18
作者 Dowon Park Radoslaw L.Michalowski 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3907-3923,共17页
Degradation of rock mass produced by rock blasting,stress relief,and other causes is an important factor in the assessment of rock strength.Quantified as a disturbance factor,such degradation varies depending on blast... Degradation of rock mass produced by rock blasting,stress relief,and other causes is an important factor in the assessment of rock strength.Quantified as a disturbance factor,such degradation varies depending on blasting control,stress state and stress relief,and rock mass quality.This study focuses on the impact of disturbance on the safety of slopes.The disturbance in the rock mass is characterized by the geometry of the disturbed zone,its size,the magnitude,and the decaying rate with the distance away from the slope surface.A method accounting for decay of rock disturbance is presented.A study of the impact of rock disturbance characteristics on the quantitative stability measures of slopes was carried out.These characteristics included disturbed zone geometry,its thickness,the maximum magnitude of the disturbance factor,and the rate of disturbance decaying.The thickness of the disturbed zone and the maximum factor of disturbance were found to have the greatest impact.For example,the factor of safety for a 45slope in low-quality rock mass can decrease from 1.96 to 1.09 as the thickness of the disturbed zone increases from 1/4 of slope height H to the double of H and the maximum disturbance factor increases from 0.5 to 1.Uniform thickness of a disturbed zone was found to yield more conservative outcomes than the triangular zones did.The critical failure surfaces were found to be shallow for high rates of disturbance decay,and they were the deepest for spatially uniform disturbance factors. 展开更多
关键词 Disturbance decaying Blast damage Limit analysis Damage zone stability number
下载PDF
Stability behavior of the Lanxi ancient flood control levee after reinforcement with upside-down hanging wells and grouting curtain
19
作者 QIN Zipeng TIAN Yan +4 位作者 GAO Siyuan ZHOU Jianfen HE Xiaohui HE Weizhong GAO Jingquan 《Journal of Mountain Science》 SCIE CSCD 2024年第1期84-99,共16页
The stability of the ancient flood control levees is mainly influenced by water level fluctuations, groundwater concentration and rainfalls. This paper takes the Lanxi ancient levee as a research object to study the e... The stability of the ancient flood control levees is mainly influenced by water level fluctuations, groundwater concentration and rainfalls. This paper takes the Lanxi ancient levee as a research object to study the evolution laws of its seepage, displacement and stability before and after reinforcement with the upside-down hanging wells and grouting curtain through numerical simulation methods combined with experiments and observations. The study results indicate that the filled soil is less affected by water level fluctuations and groundwater concentration after reinforcement. A high groundwater level is detrimental to the levee's long-term stability, and the drainage issues need to be fully considered. The deformation of the reinforced levee is effectively controlled since the fill deformation is mainly borne by the upside-down hanging wells. The safety factors of the levee before reinforcement vary significantly with the water level. The minimum value of the safety factors is 0.886 during the water level decreasing period, indicating a very high risk of the instability. While it reached 1.478 after reinforcement, the stability of the ancient levee is improved by a large margin. 展开更多
关键词 stability analysis Multiple factors Antiseepage reinforcement Upside-down hanging well Grouting curtain Ancient levee
下载PDF
Stability analysis for affine fuzzy system based on fuzzy Lyapunov functions
20
作者 柳善建 沈炯 +1 位作者 刘西陲 李益国 《Journal of Southeast University(English Edition)》 EI CAS 2011年第3期295-299,共5页
An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local ... An analysis method based on the fuzzy Lyapunov functions is presented to analyze the stability of the continuous affine fuzzy systems. First, a method is introduced to deal with the consequent part of the fuzzy local model. Thus, the stability analysis method of the homogeneous fuzzy system can be used for reference. Stability conditions are derived in terms of linear matrix inequalities based on the fuzzy Lyapunov functions and the modified common Lyapunov functions, respectively. The results demonstrate that the stability result based on the fuzzy Lyapunov functions is less conservative than that based on the modified common Lyapunov functions via numerical examples. Compared with the method which does not expand the consequent part, the proposed method is simpler but its feasible region is reduced. Finally, in order to expand the application of the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov function is proposed, which can be used to analyze the stability for triangular or trapezoidal membership functions and obtain the stability conditions. A numerical example validates the effectiveness of the proposed approach. 展开更多
关键词 affine fuzzy system stability analysis linear matrix inequalities fuzzy Lyapunov function
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部