期刊文献+
共找到1,489篇文章
< 1 2 75 >
每页显示 20 50 100
Asynchronous Learning-Based Output Feedback Sliding Mode Control for Semi-Markov Jump Systems: A Descriptor Approach
1
作者 Zheng Wu Yiyun Zhao +3 位作者 Fanbiao Li Tao Yang Yang Shi Weihua Gui 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1358-1369,共12页
This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of sys... This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively. 展开更多
关键词 Asynchronous switching learning-based control output feedback semi-Markovian jump systems sliding mode con-trol(SMC).
下载PDF
Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design 被引量:30
2
作者 Jingmei Zhang Changyin Sun +1 位作者 Ruimin Zhang Chengshan Qian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期94-101,共8页
Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near... Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near space hypersonic vehicle (NSHV) in the presence of parameter variations and external disturbances. In the attitude angle loop, a robust adaptive virtual control law is designed by using the adaptive method to estimate the unknown upper bound of the compound uncertainties. In the angular velocity loop, an adaptive sliding mode control law is designed to suppress the effect of parameter variations and external disturbances. The main benefit of the sliding mode control is robustness to parameter variations and external disturbances. To further improve the control performance, RBFNNs are introduced to approximate the compound uncertainties in the attitude angle loop and angular velocity loop, respectively. Based on Lyapunov stability theory, the tracking errors are shown to be asymptotically stable. Simulation results show that the proposed control system attains a satisfied control performance and is robust against parameter variations and external disturbances. © 2014 Chinese Association of Automation. 展开更多
关键词 AIRSHIPS Angular velocity Attitude control backSTEPPING Control theory Design Functions Hypersonic aerodynamics Hypersonic vehicles Navigation Radial basis function networks sliding mode control Uncertainty analysis Vehicles
下载PDF
An adaptive backstepping sliding mode method for flight attitude of quadrotor UAVs 被引量:16
3
作者 JIANG Xue-ying SU Cheng-li +3 位作者 XU Ya-peng LIU Kai SHI Hui-yuan LI Ping 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第3期616-631,共16页
To overcome nonlinear and 6-DOF(degrees of freedom)under-actuated problems for the attitude and position of quadrotor UAVs,an adaptive backstepping sliding mode method for flight attitude of quadrotor UAVs is proposed... To overcome nonlinear and 6-DOF(degrees of freedom)under-actuated problems for the attitude and position of quadrotor UAVs,an adaptive backstepping sliding mode method for flight attitude of quadrotor UAVs is proposed,in which an adaptive law is designed to online estimate the parameter variations and the upper bound of external disturbances and the assessments is utilized to compensate the backstepping sliding mode control.In addition,the tracking error of the design method is shown to asymptotically converge to zero by using Lyapunov theory.Finally,based on the numerical simulation of quadrotor UAVs using the setting parameters,the results show that the proposed control approach can stabilize the attitude and has hover flight capabilities under the parameter perturbations and external disturbances. 展开更多
关键词 quadrotor UAVs adaptive backstepping sliding mode adaptive law tracking error
下载PDF
Nominal Model-Based Sliding Mode Control with Backstepping for 3-Axis Flight Table 被引量:11
4
作者 刘金琨 孙富春 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第1期65-71,共7页
Based on nominal model, a novel global sliding mode controller (GSMC) with a new control scheme is proposed for a practical uncertain servo system. This control scheme consists of two combined controllers, One is th... Based on nominal model, a novel global sliding mode controller (GSMC) with a new control scheme is proposed for a practical uncertain servo system. This control scheme consists of two combined controllers, One is the global sliding mode controller for practical plant, the other is the integral backstepping controller for nominal model. Modeling error between practical plant and nominal model is used to design GSMC. The steady-state control accuracy can be guaranteed by the integral backstepping control law, and the global robustness can be obtained by GSMC. The stability of the proposed controller is proved according to the Lyapunov approach. The simulation results both of sine signal and step signal tracking for 3-axis flight table are investigated to show good position tracking performance and high robustness with respect to large and parameter changes over all the response time. 展开更多
关键词 nominal model sliding mode control backstepping control robust control 3-axis flight table
下载PDF
Adaptive Backstepping Terminal Sliding Mode Control Method Based on Recurrent Neural Networks for Autonomous Underwater Vehicle 被引量:12
5
作者 Chao Yang Feng Yao Ming-Jun Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期228-243,共16页
The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic ... The trajectory tracking control problem is addressed for autonomous underwater vehicle(AUV) in marine environ?ment, with presence of the influence of the uncertain factors including ocean current disturbance, dynamic modeling uncertainty, and thrust model errors. To improve the trajectory tracking accuracy of AUV, an adaptive backstepping terminal sliding mode control based on recurrent neural networks(RNN) is proposed. Firstly, considering the inaccu?rate of thrust model of thruster, a Taylor’s polynomial is used to obtain the thrust model errors. And then, the dynamic modeling uncertainty and thrust model errors are combined into the system model uncertainty(SMU) of AUV; through the RNN, the SMU and ocean current disturbance are classified, approximated online. Finally, the weights of RNN and other control parameters are adjusted online based on the backstepping terminal sliding mode controller. In addition, a chattering?reduction method is proposed based on sigmoid function. In chattering?reduction method, the sigmoid function is used to realize the continuity of the sliding mode switching function, and the sliding mode switching gain is adjusted online based on the exponential form of the sliding mode function. Based on the Lyapu?nov theory and Barbalat’s lemma, it is theoretically proved that the AUV trajectory tracking error can quickly converge to zero in the finite time. This research proposes a trajectory tracking control method of AUV, which can e ectively achieve high?precision trajectory tracking control of AUV under the influence of the uncertain factors. The feasibility and e ectiveness of the proposed method is demonstrated with trajectory tracking simulations and pool?experi?ments of AUV. 展开更多
关键词 Autonomous underwater vehicle(AUV) Trajectory tracking Neural networks backstepping method Terminal sliding mode Adaptive control
下载PDF
Modeling and Robust Backstepping Sliding Mode Control with Adaptive RBFNN for a Novel Coaxial Eight-rotor UAV 被引量:12
6
作者 Cheng Peng Yue Bai +3 位作者 Xun Gong Qingjia Gao Changjun Zhao Yantao Tian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期56-64,共9页
This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles (UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV.... This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles (UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV. The dynamical and kinematical model for the coaxial eight-rotor UAV is developed, which has never been proposed before. A robust backstepping sliding mode controller (BSMC) with adaptive radial basis function neural network (RBFNN) is proposed to control the attitude of the eightrotor UAV in the presence of model uncertainties and external disturbances. The combinative method of backstepping control and sliding mode control has improved robustness and simplified design procedure benefiting from the advantages of both controllers. The adaptive RBFNN as the uncertainty observer can effectively estimate the lumped uncertainties without the knowledge of their bounds for the eight-rotor UAV. Additionally, the adaptive learning algorithm, which can learn the parameters of RBFNN online and compensate the approximation error, is derived using Lyapunov stability theorem. And then the uniformly ultimate stability of the eight-rotor system is proved. Finally, simulation results demonstrate the validity of the proposed robust control method adopted in the novel coaxial eight-rotor UAV in the case of model uncertainties and external disturbances. © 2014 Chinese Association of Automation. 展开更多
关键词 Adaptive control systems Aircraft control Approximation algorithms Attitude control backSTEPPING Controllers Functions Learning algorithms Radial basis function networks Robust control Robustness (control systems) sliding mode control Uncertainty analysis
下载PDF
Backstepping sliding mode control for uncertain strict-feedback nonlinear systems using neural-network-based adaptive gain scheduling 被引量:12
7
作者 YANG Yueneng YAN Ye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期580-586,共7页
A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain st... A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC. 展开更多
关键词 backstepping control sliding mode control(SMC) neural network(NN) strict-feedback system chattering decrease
下载PDF
Adaptive backstepping finite-time sliding mode control of spacecraft attitude tracking 被引量:9
8
作者 Chutiphon Pukdeboon 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期826-839,共14页
This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertaint... This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertainties and external disturbances. The first control scheme is developed by combining sliding mode con- trol with a backstepping technique to achieve fast and accurate tracking responses. To obtain higher tracking precision and relax the requirement of the upper bounds on the uncertainties, a se- cond control law is also designed by combining the second or- der sliding mode control and an adaptive backstepping technique. This control law provides complete compensation of uncertainty and disturbances. Although it assumes that the uncertainty and disturbances are bounded, the proposed control law does not require information about the bounds on the uncertainties and disturbances. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system are ensured by the Lya- punov approach. Numerical simulations on attitude tracking control of spacecraft are provided to demonstrate the performance of the proposed controllers. 展开更多
关键词 attitude tracking control sliding mode control back-stepping design finite-time convergence.
下载PDF
Sliding mode control for an aerodynamic missile based on backstepping design 被引量:8
9
作者 WenjinGU HongchaoZHAO ChangpengPAN 《控制理论与应用(英文版)》 EI 2005年第1期71-75,共5页
In order to solve the mismatched uncertainties of a class of nonlinearsystems, a control method of sliding mode control (SMC) based on the backstepping design isproposed. It introduces SMC in to the last step of backs... In order to solve the mismatched uncertainties of a class of nonlinearsystems, a control method of sliding mode control (SMC) based on the backstepping design isproposed. It introduces SMC in to the last step of backstepping design to modify the backsteppingalgorithm. This combination not only enables the generalization of the backstepping design to beapplied to more general nonlinear systems, but also makes the SMC method become effective in solvingthe mismatched uncertainties. The SMC based on the backstepping design is applied to the flightcontrol system design of an aerodynamic missile. The control system is researched throughsimulation. The simulation results show the effectiveness of the proposed control method. 展开更多
关键词 mismatched uncertainties sliding mode control backstepping design aerodynamic missile
下载PDF
Adaptive Backstepping Sliding Mode Control for Nonlinear Systems with Input Saturation 被引量:5
10
作者 ZHANG Hongmei ZHANG Guoshan 《Transactions of Tianjin University》 EI CAS 2012年第1期46-51,共6页
An adaptive backstepping sliding mode control is proposed for a class of uncertain nonlinear systems with input saturation.A command filtered approach is used to prevent input saturation from destroying the adaptive c... An adaptive backstepping sliding mode control is proposed for a class of uncertain nonlinear systems with input saturation.A command filtered approach is used to prevent input saturation from destroying the adaptive capabilities of neural networks (NNs).The control law and adaptive updating laws of NNs are derived in the sense of Lyapunov function,so the stability can be guaranteed even under the input saturation.The proposed control law is robust against the disturbance,and it can also eliminate the impact of input saturation.Simulation results indicate that the proposed controller has a good performance. 展开更多
关键词 nonlinear system input saturation adaptive backstepping control sliding mode control neural network
下载PDF
Adaptive sliding mode backstepping control for near space vehicles considering engine faults 被引量:5
11
作者 ZHAO Jing JIANG Bin +2 位作者 XIE Fei GAO Zhifeng XU Yufei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期343-351,共9页
A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backsteppin... A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backstepping with the sliding mode control strategy could guarantee the system’s stability and track desired signals under external disturbances and engine faults. Firstly, attitude mode description and the engine faulty model are given. Secondly, a nominal control law is designed.Thirdly, a sliding mode observer is given later in order to estimate both the information of engine faults and external disturbances. An adaptive sliding mode technology based on the previous nominal control law is developed via updating faulty parameters. Finally,analyze the system’s fault-tolerant performance and reliability through experiment simulation, which verifies the proposed design of fault-tolerant control can tolerate engine faults, as well as the strong robustness for external disturbance. 展开更多
关键词 fault tolerant control adaptive sliding mode(ASM) engine fault near space vehicle(NSV)
下载PDF
Robust force tracking control via backstepping sliding mode control and virtual damping control for hydraulic quadruped robots 被引量:4
12
作者 SHEN Wei Lü Xiao-bin MA Chen-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2673-2686,共14页
In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order ... In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors,the backstepping sliding mode controller is combined with the adaptive reference trajectory generator.Finally,a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change.The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged;the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed;when the environment suddenly changes,the drive unit can move slowly until the robot re-contacts the environment. 展开更多
关键词 hydraulic quadruped robot impedance control backstepping sliding mode control virtual damping control
下载PDF
State Feedback Sliding Mode Control without Chattering by Constructing Hurwitz Matrix for AUV Movement 被引量:4
13
作者 Huan-Yin Zhou Kai-Zhou Liu Xi-Sheng Feng 《International Journal of Automation and computing》 EI 2011年第2期262-268,共7页
This paper presents a new method to eliminate the chattering of state feedback sliding mode control (SMC) law for the mobile control of an autonomous underwater vehicle (AUV) which is nonlinear and suffers from un... This paper presents a new method to eliminate the chattering of state feedback sliding mode control (SMC) law for the mobile control of an autonomous underwater vehicle (AUV) which is nonlinear and suffers from unknown disturbances system. SMC is a well-known nonlinear system control algorithm for its anti-disturbances capability, while the chattering on switch surface is one stiff question. To dissipate the well-known chattering of SMC, the switching manifold is proposed by presetting a Hurwitz matrix which is deducted from the state feedback matrix. Meanwhile, the best switching surface is achieved by use of eigenvalues of the Hurwitz matrix. The state feedback control parameters are not only applied to control the states of AUV but also connected with coefficients of switching surface. The convergence of the proposed control law is verified by Lyapunov function and the robust character is validated by the Matlab platform of one AUV model. 展开更多
关键词 Autonomous underwater vehicle (AUV) state feedback sliding mode control (SMC) switching manifold Hurwitz matrix Matlab platform Lyapunov function.
下载PDF
Backstepping sliding mode control with self recurrent wavelet neural network observer for a novel coaxial twelve-rotor UAV 被引量:2
14
作者 Qiao Guanyu Peng Cheng 《High Technology Letters》 EI CAS 2018年第2期142-148,共7页
The robust attitude control for a novel coaxial twelve-rotor UAV which has much greater payload capacity,higher drive capability and damage tolerance than a quad-rotor UAV is studied. Firstly,a dynamical and kinematic... The robust attitude control for a novel coaxial twelve-rotor UAV which has much greater payload capacity,higher drive capability and damage tolerance than a quad-rotor UAV is studied. Firstly,a dynamical and kinematical model for the coaxial twelve-rotor UAV is designed. Considering model uncertainties and external disturbances,a robust backstepping sliding mode control( BSMC) with self recurrent wavelet neural network( SRWNN) method is proposed as the attitude controller for the coaxial twelve-rotor. A combinative algorithm of backstepping control and sliding mode control has simplified design procedures with much stronger robustness benefiting from advantages of both controllers. SRWNN as the uncertainty observer is able to estimate the lumped uncertainties effectively.Then the uniformly ultimate stability of the twelve-rotor system is proved by Lyapunov stability theorem. Finally,the validity of the proposed robust control method adopted in the twelve-rotor UAV under model uncertainties and external disturbances are demonstrated via numerical simulations and twelve-rotor prototype experiments. 展开更多
关键词 coaxial twelve-rotor UAV backstepping sliding mode control BSMC self re-current wavelet neural network (SRWNN) model uncertainties external disturbances
下载PDF
Sliding Mode Control Approach for Electrically Controllable Clutch of AMT Based on the Feedback Linearization 被引量:1
15
作者 程东升 张建武 +1 位作者 叶晓峰 黄维纲 《Journal of Donghua University(English Edition)》 EI CAS 2003年第3期88-93,共6页
A sliding mode control approach based on the feedback linearization is proposed for the electrically controllable clutch of AMT vehicles. The nonlinear dynamic model for the hydraulic actuator associated with clutch i... A sliding mode control approach based on the feedback linearization is proposed for the electrically controllable clutch of AMT vehicles. The nonlinear dynamic model for the hydraulic actuator associated with clutch is established. By means of the exact feedback linearization procedure of differential geometry, an equivalent, fully controllable and linear model is derived via a homomorphic transformation for the AMT clutch system.Furthermore, a sliding mode control is introduced to improve robustness. The tracking tests are performed using the sliding mode control on a Santana LX passenger car, and the experimental results prove that this nonlinear controller is of fine robustness and high degree of tracking accuracy. 展开更多
关键词 electrically controllable clutch exact feedback linearization sliding mode control ROBUSTNESS
下载PDF
Backstepping Sliding Mode Control Based on Extended State Observer for Hydraulic Servo System 被引量:1
16
作者 Zhenshuai Wan Yu Fu +1 位作者 Chong Liu Longwang Yue 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3565-3581,共17页
Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertaint... Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking perfor-mance.To deal with these difficulties,this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interfer-ence ability.For this purpose,the nonlinear dynamic model is firstly established,where the nonlinear behaviors and modeling uncertainties are lumped as one term.Then,the extended state observer is introduced to estimate the lumped distur-bance.The system stability is proved by using the Lyapunov stability theorem.Finally,comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme. 展开更多
关键词 Hydraulic servo system nonlinear behaviors modeling uncertainties backstepping control sliding mode control extended state observer
下载PDF
Trajectory tracking guidance of interceptor via prescribed performance integral sliding mode with neural network disturbance observer 被引量:1
17
作者 Wenxue Chen Yudong Hu +1 位作者 Changsheng Gao Ruoming An 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期412-429,共18页
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system... This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots. 展开更多
关键词 BP network neural Integral sliding mode control(ISMC) Missile defense Prescribed performance function(PPF) State observer Tracking guidance system
下载PDF
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach 被引量:1
18
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
下载PDF
Control method based on DRFNN sliding mode for multifunctional flexible multistate switch 被引量:1
19
作者 Jianghua Liao Wei Gao +1 位作者 Yan Yang Gengjie Yang 《Global Energy Interconnection》 EI CSCD 2024年第2期190-205,共16页
To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this st... To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis. 展开更多
关键词 Distribution networks Flexible multistate switch Grounding fault arc suppression Double-loop recursive fuzzy neural network Quasi-continuous second-order sliding mode
下载PDF
Feedback Attitude Sliding Mode Regulation Control of Spacecraft Using Arm Motion
20
作者 SHI Ye LIANG Bin +2 位作者 XU Dong WANG Xueqian XU Wenfu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期873-880,共8页
The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields.Most of the solutions of the manipulator’s motion trackin... The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields.Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance,so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints.Thus,sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process.Due to the switching effects of the variable structure controller,once the tracking error reaches the designed hyper-plane,it will be restricted to this plane permanently even with the existence of external disturbances.Thus,precise attitude regulation can be achieved.Furthermore,taking the non-zero initial tracking errors and chattering phenomenon into consideration,saturation functions are used to replace sign functions to smooth the control torques.The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller.Mathematical models of free-floating space manipulator are established and simulations are conducted in the end.The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm,the steady state error is 0.000 2 rad.In addition,the joint tracking trajectory is smooth,the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input.The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion,and improves the precision of the spacecraft attitude regulation. 展开更多
关键词 attitude regulation space robot trajectory tracking sliding mode control
下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部