Terminal sliding mode controller method is introduced to enhance the regulation performance of the hydraulic turbine governing system(HTGS).For the purpose of describing the characteristics of controlled system and de...Terminal sliding mode controller method is introduced to enhance the regulation performance of the hydraulic turbine governing system(HTGS).For the purpose of describing the characteristics of controlled system and deducing the control rule,a nonlinear mathematic model of hydraulic turbine governing system with bifurcated penstocks(HTGSBF)under control input saturation is established,and the input/output state linearization feedback approach is used to obtain the relationship between turbine speed and controller output.To address the control input saturation problem,an adaptive assistant system is designed to compensate for controller truncation.Numerical simulations have been conducted under fixed point stabilization and periodic orbit tracking conditions to compare the dynamic performances of proposed terminal sliding mode controllers and conventional sliding mode controller.The results indicate that the proposed terminal sliding mode controllers not only have a faster response and accurate tracking results,but also own a stronger robustness to the system parameter variations.Moreover,the comparisons between the proposed terminal sliding mode controllers and current most often used proportional-integral-differential(PID)controller,as well its variant NPID controller,are discussed at the end of this paper,where the superiority of the terminal sliding mode controllers also have been verified.展开更多
Based on the chaotic geomagnetic field model, a non-smooth factor is introduced to explore complex dynamical behaviors of a system with multiple time scales. By regarding the whole excitation term as a parameter, bifu...Based on the chaotic geomagnetic field model, a non-smooth factor is introduced to explore complex dynamical behaviors of a system with multiple time scales. By regarding the whole excitation term as a parameter, bifurcation sets are derived, which divide the generalized parameter space into several regions corresponding to different kinds of dynamic behaviors. Due to the existence of non-smooth factors, different types of bifurcations are presented in spiking states, such as grazing-sliding bifurcation and across-sliding bifurcation. In addition, the non-smooth fold bifurcation may lead to the appearance of a special quiescent state in the interface as well as a non-smooth homoclinic bifurcation phenomenon. Due to these bifurcation behaviors, a special transition between spiking and quiescent state can also occur.展开更多
This paper is concerned with the bifurcation properties on the line of discontinuity of planar piecewise smooth systems. The existence of equilibria and periodic solutions with sliding motion in a class of planar piec...This paper is concerned with the bifurcation properties on the line of discontinuity of planar piecewise smooth systems. The existence of equilibria and periodic solutions with sliding motion in a class of planar piecewise smooth systems with 3-parameters is investigated in this paper using the theory of differential inclu-sion and tools of Poincar′e maps.展开更多
基金supported by Open Fund of Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station in China Three Gorges University(No.2019KJX02).
文摘Terminal sliding mode controller method is introduced to enhance the regulation performance of the hydraulic turbine governing system(HTGS).For the purpose of describing the characteristics of controlled system and deducing the control rule,a nonlinear mathematic model of hydraulic turbine governing system with bifurcated penstocks(HTGSBF)under control input saturation is established,and the input/output state linearization feedback approach is used to obtain the relationship between turbine speed and controller output.To address the control input saturation problem,an adaptive assistant system is designed to compensate for controller truncation.Numerical simulations have been conducted under fixed point stabilization and periodic orbit tracking conditions to compare the dynamic performances of proposed terminal sliding mode controllers and conventional sliding mode controller.The results indicate that the proposed terminal sliding mode controllers not only have a faster response and accurate tracking results,but also own a stronger robustness to the system parameter variations.Moreover,the comparisons between the proposed terminal sliding mode controllers and current most often used proportional-integral-differential(PID)controller,as well its variant NPID controller,are discussed at the end of this paper,where the superiority of the terminal sliding mode controllers also have been verified.
基金Project supported by the National Natural Science Foundation of China(Grant No.11472116)the Key Program of the National Natural Science Foundation of China(Grant No.11632008)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX17 1784)
文摘Based on the chaotic geomagnetic field model, a non-smooth factor is introduced to explore complex dynamical behaviors of a system with multiple time scales. By regarding the whole excitation term as a parameter, bifurcation sets are derived, which divide the generalized parameter space into several regions corresponding to different kinds of dynamic behaviors. Due to the existence of non-smooth factors, different types of bifurcations are presented in spiking states, such as grazing-sliding bifurcation and across-sliding bifurcation. In addition, the non-smooth fold bifurcation may lead to the appearance of a special quiescent state in the interface as well as a non-smooth homoclinic bifurcation phenomenon. Due to these bifurcation behaviors, a special transition between spiking and quiescent state can also occur.
文摘This paper is concerned with the bifurcation properties on the line of discontinuity of planar piecewise smooth systems. The existence of equilibria and periodic solutions with sliding motion in a class of planar piecewise smooth systems with 3-parameters is investigated in this paper using the theory of differential inclu-sion and tools of Poincar′e maps.