A Nomex fabric/phenolic composite was prepared,and its tribological properties were evaluated under dry and water‐bathed sliding conditions by a pin‐on‐disk tribometer.The resulting size of the friction coefficient...A Nomex fabric/phenolic composite was prepared,and its tribological properties were evaluated under dry and water‐bathed sliding conditions by a pin‐on‐disk tribometer.The resulting size of the friction coefficient for the Nomex fabric/phenolic composite in the study occurred in the following order:dry sliding condition>distilled water‐bathed sliding condition>sea water‐bathed sliding condition.The fabric composite’s wear rate from high to low was as follows:distilled water‐bathed sliding condition>sea water‐bathed sliding condition>dry sliding condition.Under water‐bathed sliding conditions,penetration of water into the cracks accelerated the composite’s invalidation process,resulting in a higher wear rate.We also found that the extent of corrosion and transfer film formed on the counterpart pin significantly influenced the wear rate of the Nomex fabric composite.Discussion of the Nomex fabric composite’s wear mechanisms under the sliding conditions investigated is provided on the basis of the characterization results.展开更多
In order to assess the new tribological properties of laser surface hardened GCr15 steel, the wear resistance between specimens treated with laser and those of conventionally hardened under dry sliding conditions was ...In order to assess the new tribological properties of laser surface hardened GCr15 steel, the wear resistance between specimens treated with laser and those of conventionally hardened under dry sliding conditions was compared. The change of wear mechanisms in laser hardened GCr15 resulted in a distinct difference in wear rates. The results showed that quenched zones not only had sufficient depth of hardening and higher hardness, but had more retained austenite and finer carbides because of a higher degree of carbide dissolution. Laser surface hardened GCr15 steel specimens exhibited superior wear resistance to their conventionally hardened specimens due to the effects of the microstructure hardening, high hardness and toughness. The wear mechanism for both the laser quenched layer and conventionally hardened layer was highly similar, generally involving adhesive, material transfer, wear-induced oxidation and plowing. When conventionally hardened block specimens rubbed against the laser hardened specimens, the surface of conventionally hardened block specimens was polished. The microstructural thermal stability was increased after laser surface treatment.展开更多
Generally, friction and wear occur on the surface of the materials. It is necessary to investigate the dry sliding friction and wear behavior of surface. In this paper, 3-D topographical parameters were used to invest...Generally, friction and wear occur on the surface of the materials. It is necessary to investigate the dry sliding friction and wear behavior of surface. In this paper, 3-D topographical parameters were used to investigate the topographical characteristics of dry sliding surfaces for particle-reinforced alu-minum composites on semi-metallic friction material. The experimental results indicate that the surface topography of the particle-reinforced aluminum composites can be divided into two types, the flaking-off pit type and the groove type. The composites whose surface topography is the flaking-off pit type possess superior heat conductivity and bearing area, lower wear rate, and higher friction coefficient than the groove type. Consequently, the flaking-off pit type surface topography is much better than the groove type for particle-reinforced aluminum composites on semi-metallic friction materials in dry sliding.展开更多
基金The authors acknowledge the financial support of the National Science Foundation of China grant Nos.51375472 and 51305429.
文摘A Nomex fabric/phenolic composite was prepared,and its tribological properties were evaluated under dry and water‐bathed sliding conditions by a pin‐on‐disk tribometer.The resulting size of the friction coefficient for the Nomex fabric/phenolic composite in the study occurred in the following order:dry sliding condition>distilled water‐bathed sliding condition>sea water‐bathed sliding condition.The fabric composite’s wear rate from high to low was as follows:distilled water‐bathed sliding condition>sea water‐bathed sliding condition>dry sliding condition.Under water‐bathed sliding conditions,penetration of water into the cracks accelerated the composite’s invalidation process,resulting in a higher wear rate.We also found that the extent of corrosion and transfer film formed on the counterpart pin significantly influenced the wear rate of the Nomex fabric composite.Discussion of the Nomex fabric composite’s wear mechanisms under the sliding conditions investigated is provided on the basis of the characterization results.
基金Funded By the Natural Science Research Foundation of Department of Education of AnHui Province in China( No.KJ2009A021)
文摘In order to assess the new tribological properties of laser surface hardened GCr15 steel, the wear resistance between specimens treated with laser and those of conventionally hardened under dry sliding conditions was compared. The change of wear mechanisms in laser hardened GCr15 resulted in a distinct difference in wear rates. The results showed that quenched zones not only had sufficient depth of hardening and higher hardness, but had more retained austenite and finer carbides because of a higher degree of carbide dissolution. Laser surface hardened GCr15 steel specimens exhibited superior wear resistance to their conventionally hardened specimens due to the effects of the microstructure hardening, high hardness and toughness. The wear mechanism for both the laser quenched layer and conventionally hardened layer was highly similar, generally involving adhesive, material transfer, wear-induced oxidation and plowing. When conventionally hardened block specimens rubbed against the laser hardened specimens, the surface of conventionally hardened block specimens was polished. The microstructural thermal stability was increased after laser surface treatment.
基金Supported by the Innovation Fund for Outstanding Scholar of Henan Province (No. 0421000600)
文摘Generally, friction and wear occur on the surface of the materials. It is necessary to investigate the dry sliding friction and wear behavior of surface. In this paper, 3-D topographical parameters were used to investigate the topographical characteristics of dry sliding surfaces for particle-reinforced alu-minum composites on semi-metallic friction material. The experimental results indicate that the surface topography of the particle-reinforced aluminum composites can be divided into two types, the flaking-off pit type and the groove type. The composites whose surface topography is the flaking-off pit type possess superior heat conductivity and bearing area, lower wear rate, and higher friction coefficient than the groove type. Consequently, the flaking-off pit type surface topography is much better than the groove type for particle-reinforced aluminum composites on semi-metallic friction materials in dry sliding.