A visual servoing tracking controller is proposed based on the sliding mode control theory in order to achieve strong robustness against parameter variations and external disturbances. A sliding plane with time delay ...A visual servoing tracking controller is proposed based on the sliding mode control theory in order to achieve strong robustness against parameter variations and external disturbances. A sliding plane with time delay compensation is presented by the pre-estimate of states. To reduce the chattering of the sliding mode controller, a modified exponential reaching law and hyperbolic tangent function are applied to the design of visual controller and robot joint controller. Simulation results show that the visual servoing control scheme is robust and has good tracking performance.展开更多
A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining...A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.展开更多
In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm...In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm which was recently reported in literature.Stability analysis has been done to verify the suitability of the proposed structure for industrial processes.The proposed control strategy is applied to three different types of unstable processes including non-minimum phase and nonlinear systems.A comparative study ensures that the proposed scheme gives superior performance over the recently reported VSC system.Furthermore,the proposed method gives satisfactory results for a cart inverted pendulum system in the presence of external disturbance and noise.展开更多
A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance i...A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance indexes in the coordinating optimization, while the tuning rate of boundary layer width (BLW) is employed as the optimization parameter. Based on the mathematical relationship between the BLW and steady-state error, an optimized BLW tuning rate is added to the nonlinear control term of SMVSC. Simulation experiment results applied to the positioning control of an electro-hydraulic servo system show the comprehensive superiority in dynamical and static state performance by using the proposed controller is better than that by using SMVSC without optimized BLW tuning rate. This succeeds in coordinately considering both chattering reduction and high-precision control realization in SMVSC.展开更多
This paper presents two modified methods of designing sliding surface in variable structure systems based on the mathematical equation established for the relationship between the steady state error of the system and...This paper presents two modified methods of designing sliding surface in variable structure systems based on the mathematical equation established for the relationship between the steady state error of the system and the slope of the sliding surface. Replacing the switching function with the saturation function in the control signal, the methods can not only reduce the system steady state error, but also smooth chatterring in the variable structure systems.展开更多
This paper is devoted to study the application of the decentralized sliding mode control method, which is used to reduce the vibration of large spacecraft flexible appendage. In the process of control design, the slid...This paper is devoted to study the application of the decentralized sliding mode control method, which is used to reduce the vibration of large spacecraft flexible appendage. In the process of control design, the sliding surface of sliding mode control is determined by minimizing the optimal cost function, and the controller is the saturation controller. The controlled structure is subject to arbitrary, unmeasurable and uncertainty disturbance forces and initial displacement. The decentralized control method and the centralized control method are used to control vibration of the structure respectively. When the system is subjected to the initial displacement or external disturbance, the computer simulation shows that both of these control methods perform effectively, but the number of Riccati equation of the decentralized method is far smaller than that of centralized control method, especially in a large system.展开更多
A novel genetic algorithm (NGA) is proposed, which possesses micro-regulation and renascence operation. The optimized variable searching interval is regulated gradually according to the sub-group of excellent individu...A novel genetic algorithm (NGA) is proposed, which possesses micro-regulation and renascence operation. The optimized variable searching interval is regulated gradually according to the sub-group of excellent individuals. The NGA is used to optimize the parameters of the variable structure control (VSC), which satisfies the new reaching law and sliding mode. It is used in robot control systems. Simulation results are given.展开更多
In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear un...In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.展开更多
This paper, at the first time, considers the problem of decentralized variable structure control of complex giant singular uncertainty systems by using the property of diagonally dominant matrix and Frobenius-Person t...This paper, at the first time, considers the problem of decentralized variable structure control of complex giant singular uncertainty systems by using the property of diagonally dominant matrix and Frobenius-Person theorem. The splendid selection of switching manifold for each subsystem makes the design relatively straightforward and can be easily realized. An illustrate example is given.展开更多
This paper proposes the new cascaded series parallel design for improved dynamic performance of DC-DC buck boost converters by a new Sliding Mode Control (SMC) method. The converter is controlled using Sliding Mode Co...This paper proposes the new cascaded series parallel design for improved dynamic performance of DC-DC buck boost converters by a new Sliding Mode Control (SMC) method. The converter is controlled using Sliding Mode Control method that utilizes the converter’s duty ratio to determine the skidding surface. System modeling and simulation results are presented. The results also showed an improved overall performance over typical PID controller, and there was no overshoot or settling time, tracking the desired output nicely. Improved converter performance and robustness were expected.展开更多
Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By app...Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By applying the proposed approximation laws of sliding mode to discrete-time variable structure control systems, the stability of origin can be guaranteed, and the chattering along the switching surface caused by discrete-time variable structure control can be restrained effectively. In designing of approximation laws, the problem that the system control input is restricted is also considered, which is very important in practical systems. Finally a simulation example shows the effectiveness of the two approximation laws proposed.展开更多
This paper presents a new method of smoothing control signal in control system of variable structure. Using the relationship between the gain of nonlinear term in the control signal and distance of the system states f...This paper presents a new method of smoothing control signal in control system of variable structure. Using the relationship between the gain of nonlinear term in the control signal and distance of the system states from the equivalent point, a saturating property with the variable width is adopted. The method not only reduces the chattering of the control signal but also decrees the steady-state error.展开更多
A method of sliding mode variable structure control for the missile body being a time varying system is presented. A remote control guidance law is designed. The method has strong robustness to target' s maneuver. To...A method of sliding mode variable structure control for the missile body being a time varying system is presented. A remote control guidance law is designed. The method has strong robustness to target' s maneuver. To reduce the chattering phenomena, quasi-sliding mode variable structure control method is used. Simulation results show that the proposed method has small miss distance for any kind of maneuvering targets and requires small control energy.展开更多
This paper describes the important application of variable structure control (VSC) theory on induction motor (IM) decoupling control system. A design scheme using singular system variable structure control method for ...This paper describes the important application of variable structure control (VSC) theory on induction motor (IM) decoupling control system. A design scheme using singular system variable structure control method for a decoupling IM system is presented. The scheme is shown to be robust to parametric variations and external disturbances. Simulation results show the stability and effectiveness of the proposed scheme展开更多
In lhis paper, we study the variable structure control of indefinite-dimensionalcontrol systems with the functional analysis method. The reaching conditions, stabilityconditions and the approximating conditions of sli...In lhis paper, we study the variable structure control of indefinite-dimensionalcontrol systems with the functional analysis method. The reaching conditions, stabilityconditions and the approximating conditions of sliding mode, as well as the generalform of the variable structure control law are given. and the elementary frame of thevariable structure control of indefinite-dimensional systems is built.展开更多
The intake air control system of a gasoline engine is a typical nonlinear system, and included among the adverse fac-tors that always induce poor idle-speed control stability are dead time and disturbances in the inta...The intake air control system of a gasoline engine is a typical nonlinear system, and included among the adverse fac-tors that always induce poor idle-speed control stability are dead time and disturbances in the intake air control process. In this paper, to improve the responsiveness when idling with regard to disturbances, a mean-value engine model (MVEM) with dead time was constructed as the control object, and the two servo structures of sliding mode control (SMC) were studied for better idle control performance, especially in transient process of speed change. The simulation results confirmed that under the constraint condition of control input, the robustness of idle speed control that is being subjected to torque disturbances and noise disturbances can be greatly improved by use of the servo structure II.展开更多
The saturation problem is the one of the most common handicaps for applying to real applications, especially the actuator saturation. This paper focuses on the robustness of the sliding mode control (SMC) which inco...The saturation problem is the one of the most common handicaps for applying to real applications, especially the actuator saturation. This paper focuses on the robustness of the sliding mode control (SMC) which incorporates a saturation constraint technique compared to classical linear quadratic regulator (LQR) with saturation. In the first step, the authors present a design methodology of SMC of a class of linear saturated systems. The authors present the structure of the saturation, after that the synthesis of the sliding surface is formulate as a problem of root clustering, which leads to the development of a continuous and non-linear control law that ensures the reaching condition of the sliding mode. The second step is devoted to present briefly the LQR controller technique. Finally, to validate results, the authors demonstrate an example of a quarter of vehicle system.展开更多
Aiming at the PWM rectifier control strategy of sliding mode control, steady state performance weak Hamiltonian control dynamic tracking performance is poor, the coordinated compound control is proposed, the feedback ...Aiming at the PWM rectifier control strategy of sliding mode control, steady state performance weak Hamiltonian control dynamic tracking performance is poor, the coordinated compound control is proposed, the feedback linearization controller and sliding mode controller Hamiltonian system is obtained, and the design of a coordinated control strategy. In order to verify the accuracy of this method, MATLAB/Simulink is used for simulation analysis. The simulation results show that the composite control can achieve the coordinated dynamic rapid tracking and constant DC output and unit power factor operation, and satisfy the control requirements of the rectifier, effectively reducing the disturbance effect on the system. Compared with Hamiltonian control, the proposed method combines the advantages of the two methods, which have the fast tracking performance and excellent steady-state characteristics, and the research prospect is broad.展开更多
A discrete variable structure control(DVSC) method for the linear time invariant systems with time delay was presented. The continuous time delay systems are first transformed into the standard discrete form which con...A discrete variable structure control(DVSC) method for the linear time invariant systems with time delay was presented. The continuous time delay systems are first transformed into the standard discrete form which contains no time delay by augmenting the state variables. Then the switching surface is determined by using the ideal quasi sliding mode. As it is difficult for the state trajectory to reach the switching surface exactly, the reaching condition in the form of approach law is used to design the controller. The deduced switching surface and controller contain not only the current step of state feedback but also some former steps of controls. Stability analysis with and without time delay information is also investigated in this paper. Numerical simulation was carried out to demonstrate the effectiveness and feasibility of the presented control method.展开更多
A method for designing a new sliding surface with global robustness is proposed.The variable structure control systems designed by this method always lie on thesliding surface from any initial states, and are robust t...A method for designing a new sliding surface with global robustness is proposed.The variable structure control systems designed by this method always lie on thesliding surface from any initial states, and are robust to the parameter variations anddisturbances. The simulation results prove the validity of the method展开更多
基金supported by China Postdoctoral Science Founda-tion (No. 20080441093)Key Laboratory Foundation of Liaoning Province (No. 2008S088).
文摘A visual servoing tracking controller is proposed based on the sliding mode control theory in order to achieve strong robustness against parameter variations and external disturbances. A sliding plane with time delay compensation is presented by the pre-estimate of states. To reduce the chattering of the sliding mode controller, a modified exponential reaching law and hyperbolic tangent function are applied to the design of visual controller and robot joint controller. Simulation results show that the visual servoing control scheme is robust and has good tracking performance.
基金This work is supported by the National Natural Science Foundation of China (No.60421002) Priority supported financially by the New Century 151 Talent Project of Zhejiang Province.
文摘A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.
文摘In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm which was recently reported in literature.Stability analysis has been done to verify the suitability of the proposed structure for industrial processes.The proposed control strategy is applied to three different types of unstable processes including non-minimum phase and nonlinear systems.A comparative study ensures that the proposed scheme gives superior performance over the recently reported VSC system.Furthermore,the proposed method gives satisfactory results for a cart inverted pendulum system in the presence of external disturbance and noise.
基金This work was supported by the Provincial Natural Science Foundation of Hunan(No.04JJ6033) the Research Foundation of Hunan Education Bureau (No.03C066).
文摘A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance indexes in the coordinating optimization, while the tuning rate of boundary layer width (BLW) is employed as the optimization parameter. Based on the mathematical relationship between the BLW and steady-state error, an optimized BLW tuning rate is added to the nonlinear control term of SMVSC. Simulation experiment results applied to the positioning control of an electro-hydraulic servo system show the comprehensive superiority in dynamical and static state performance by using the proposed controller is better than that by using SMVSC without optimized BLW tuning rate. This succeeds in coordinately considering both chattering reduction and high-precision control realization in SMVSC.
文摘This paper presents two modified methods of designing sliding surface in variable structure systems based on the mathematical equation established for the relationship between the steady state error of the system and the slope of the sliding surface. Replacing the switching function with the saturation function in the control signal, the methods can not only reduce the system steady state error, but also smooth chatterring in the variable structure systems.
文摘This paper is devoted to study the application of the decentralized sliding mode control method, which is used to reduce the vibration of large spacecraft flexible appendage. In the process of control design, the sliding surface of sliding mode control is determined by minimizing the optimal cost function, and the controller is the saturation controller. The controlled structure is subject to arbitrary, unmeasurable and uncertainty disturbance forces and initial displacement. The decentralized control method and the centralized control method are used to control vibration of the structure respectively. When the system is subjected to the initial displacement or external disturbance, the computer simulation shows that both of these control methods perform effectively, but the number of Riccati equation of the decentralized method is far smaller than that of centralized control method, especially in a large system.
文摘A novel genetic algorithm (NGA) is proposed, which possesses micro-regulation and renascence operation. The optimized variable searching interval is regulated gradually according to the sub-group of excellent individuals. The NGA is used to optimize the parameters of the variable structure control (VSC), which satisfies the new reaching law and sliding mode. It is used in robot control systems. Simulation results are given.
文摘In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.
文摘This paper, at the first time, considers the problem of decentralized variable structure control of complex giant singular uncertainty systems by using the property of diagonally dominant matrix and Frobenius-Person theorem. The splendid selection of switching manifold for each subsystem makes the design relatively straightforward and can be easily realized. An illustrate example is given.
文摘This paper proposes the new cascaded series parallel design for improved dynamic performance of DC-DC buck boost converters by a new Sliding Mode Control (SMC) method. The converter is controlled using Sliding Mode Control method that utilizes the converter’s duty ratio to determine the skidding surface. System modeling and simulation results are presented. The results also showed an improved overall performance over typical PID controller, and there was no overshoot or settling time, tracking the desired output nicely. Improved converter performance and robustness were expected.
基金This work was supported by the National Natural Science Foundation of China (No.60274099) and the Foundation of Key Laboratory of Process Industry Automation, Ministry of Education
文摘Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By applying the proposed approximation laws of sliding mode to discrete-time variable structure control systems, the stability of origin can be guaranteed, and the chattering along the switching surface caused by discrete-time variable structure control can be restrained effectively. In designing of approximation laws, the problem that the system control input is restricted is also considered, which is very important in practical systems. Finally a simulation example shows the effectiveness of the two approximation laws proposed.
文摘This paper presents a new method of smoothing control signal in control system of variable structure. Using the relationship between the gain of nonlinear term in the control signal and distance of the system states from the equivalent point, a saturating property with the variable width is adopted. The method not only reduces the chattering of the control signal but also decrees the steady-state error.
文摘A method of sliding mode variable structure control for the missile body being a time varying system is presented. A remote control guidance law is designed. The method has strong robustness to target' s maneuver. To reduce the chattering phenomena, quasi-sliding mode variable structure control method is used. Simulation results show that the proposed method has small miss distance for any kind of maneuvering targets and requires small control energy.
文摘This paper describes the important application of variable structure control (VSC) theory on induction motor (IM) decoupling control system. A design scheme using singular system variable structure control method for a decoupling IM system is presented. The scheme is shown to be robust to parametric variations and external disturbances. Simulation results show the stability and effectiveness of the proposed scheme
文摘In lhis paper, we study the variable structure control of indefinite-dimensionalcontrol systems with the functional analysis method. The reaching conditions, stabilityconditions and the approximating conditions of sliding mode, as well as the generalform of the variable structure control law are given. and the elementary frame of thevariable structure control of indefinite-dimensional systems is built.
文摘The intake air control system of a gasoline engine is a typical nonlinear system, and included among the adverse fac-tors that always induce poor idle-speed control stability are dead time and disturbances in the intake air control process. In this paper, to improve the responsiveness when idling with regard to disturbances, a mean-value engine model (MVEM) with dead time was constructed as the control object, and the two servo structures of sliding mode control (SMC) were studied for better idle control performance, especially in transient process of speed change. The simulation results confirmed that under the constraint condition of control input, the robustness of idle speed control that is being subjected to torque disturbances and noise disturbances can be greatly improved by use of the servo structure II.
文摘The saturation problem is the one of the most common handicaps for applying to real applications, especially the actuator saturation. This paper focuses on the robustness of the sliding mode control (SMC) which incorporates a saturation constraint technique compared to classical linear quadratic regulator (LQR) with saturation. In the first step, the authors present a design methodology of SMC of a class of linear saturated systems. The authors present the structure of the saturation, after that the synthesis of the sliding surface is formulate as a problem of root clustering, which leads to the development of a continuous and non-linear control law that ensures the reaching condition of the sliding mode. The second step is devoted to present briefly the LQR controller technique. Finally, to validate results, the authors demonstrate an example of a quarter of vehicle system.
文摘Aiming at the PWM rectifier control strategy of sliding mode control, steady state performance weak Hamiltonian control dynamic tracking performance is poor, the coordinated compound control is proposed, the feedback linearization controller and sliding mode controller Hamiltonian system is obtained, and the design of a coordinated control strategy. In order to verify the accuracy of this method, MATLAB/Simulink is used for simulation analysis. The simulation results show that the composite control can achieve the coordinated dynamic rapid tracking and constant DC output and unit power factor operation, and satisfy the control requirements of the rectifier, effectively reducing the disturbance effect on the system. Compared with Hamiltonian control, the proposed method combines the advantages of the two methods, which have the fast tracking performance and excellent steady-state characteristics, and the research prospect is broad.
文摘A discrete variable structure control(DVSC) method for the linear time invariant systems with time delay was presented. The continuous time delay systems are first transformed into the standard discrete form which contains no time delay by augmenting the state variables. Then the switching surface is determined by using the ideal quasi sliding mode. As it is difficult for the state trajectory to reach the switching surface exactly, the reaching condition in the form of approach law is used to design the controller. The deduced switching surface and controller contain not only the current step of state feedback but also some former steps of controls. Stability analysis with and without time delay information is also investigated in this paper. Numerical simulation was carried out to demonstrate the effectiveness and feasibility of the presented control method.
文摘A method for designing a new sliding surface with global robustness is proposed.The variable structure control systems designed by this method always lie on thesliding surface from any initial states, and are robust to the parameter variations anddisturbances. The simulation results prove the validity of the method