The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, externa...The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller.展开更多
In this paper, a curved path following control algorithm for miniature unmanned aerial vehicles(UAVs) in winds with constant speed and altitude is developed. Different to the widely considered line or orbit followin...In this paper, a curved path following control algorithm for miniature unmanned aerial vehicles(UAVs) in winds with constant speed and altitude is developed. Different to the widely considered line or orbit following, the curved path to be followed is defined in terms of the arc-length parameter, which can be straight lines, orbits, B-splines or any other curves provided that they are smooth. The proposed path following control algorithm, named by VF-SMC, is combining the vector field(VF) strategy with the sliding mode control(SMC) method. It is proven that the designed algorithm guarantees the tracking errors to be a bounded ball in the presence of winds, with the aid of the Lyapunov method and the BIBO stability. The algorithm is validated both in Matlab-based simulations and high-fidelity semi-physical simulations. In Matlab-based simulations, the proposed algorithm is verified for straight lines, orbits and B-splines to show its wide usage in different curves.The high-fidelity semi-physical simulation system is composed of actual autopilot controller, ground station and X-Plane flight simulator in-loop. In semi-physical simulations, the proposed algorithm is verified for B-spline path following under various gain parameters and wind conditions thoroughly.All experiments show the accuracy in curved path following and the excellent robustness to wind disturbances of the proposed algorithm.展开更多
基金Project(51409061)supported by the National Natural Science Foundation of ChinaProject(2013M540271)supported by China Postdoctoral Science Foundation+1 种基金Project(LBH-Z13055)supported by Heilongjiang Postdoctoral Financial Assistance,ChinaProject(HEUCFD1403)supported by Basic Research Foundation of Central Universities,China
文摘The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller.
基金supported by the National Natural Science Foundation of China under Grant No.61403406
文摘In this paper, a curved path following control algorithm for miniature unmanned aerial vehicles(UAVs) in winds with constant speed and altitude is developed. Different to the widely considered line or orbit following, the curved path to be followed is defined in terms of the arc-length parameter, which can be straight lines, orbits, B-splines or any other curves provided that they are smooth. The proposed path following control algorithm, named by VF-SMC, is combining the vector field(VF) strategy with the sliding mode control(SMC) method. It is proven that the designed algorithm guarantees the tracking errors to be a bounded ball in the presence of winds, with the aid of the Lyapunov method and the BIBO stability. The algorithm is validated both in Matlab-based simulations and high-fidelity semi-physical simulations. In Matlab-based simulations, the proposed algorithm is verified for straight lines, orbits and B-splines to show its wide usage in different curves.The high-fidelity semi-physical simulation system is composed of actual autopilot controller, ground station and X-Plane flight simulator in-loop. In semi-physical simulations, the proposed algorithm is verified for B-spline path following under various gain parameters and wind conditions thoroughly.All experiments show the accuracy in curved path following and the excellent robustness to wind disturbances of the proposed algorithm.