To study the stability of the west slope in Buzhaoba Open-Pit Mine and determine the aging stability coefficient during slide mass development, the deformation band of the west slope and the slide mass structure of th...To study the stability of the west slope in Buzhaoba Open-Pit Mine and determine the aging stability coefficient during slide mass development, the deformation band of the west slope and the slide mass structure of the 34,600 profile are obtained on the basis of hydrology, geology, and monitoring data.The residual thrust method is utilized to calculate the stability coefficients, which are 1.225 and 1.00 under sound and transfixion conditions, respectively. According to the rock damage and fragmentation and the principle of mechanical parameter degradation, the mechanical models of the slide mass development of the hard and soft rock slopes are established. An integrated model for calculating the slope stability coefficient is built considering water, vibration, and other external factors that pertain to the structural plane damage mechanism and the generating mechanism of the sliding mass. The change curve of the stability coefficient in the slide mass development is obtained from the relevant analyses,and afterwards, the stability control measures are proposed. The analysis results indicate that in the cracking stage of the hard rock, the slope stability coefficient decreases linearly with the increase in the length Lbof the hard rock crack zone. The linear slope is positively correlated to rock cohesion c. In the transfixion stage of the soft rock, the decrease speed of the stability coefficient is positively correlated to the residual strength of the soft rock. When the slope is stable, the stability coefficient is in a quadratic-linear relationship with the decreased height Dh of the side slope and in a linear relationship with anchoring force P.展开更多
The batch dyeing process is a typical nonlinear process with time-delay,where precise controlling of temperature plays a vital role on the dyeing quality.Because the accuracy and robustness of the commonly used propor...The batch dyeing process is a typical nonlinear process with time-delay,where precise controlling of temperature plays a vital role on the dyeing quality.Because the accuracy and robustness of the commonly used proportion integration differentiation(PID) algorithm had been limited,a novel method was developed to precisely control the heating and cooling stages for batch dyeing process based on predictive sliding mode control(SMC) algorithm.Firstly,a special predictive sliding mode model was constructed according to the principle of generalized predictive control(GPC);secondly,an appropriate reference trajectory for SMC was designed based on the improved approaching law;finally,the predictive sliding mode model and the Diophantine equation were used to predict the output and then the optimized control law was derived using the generalized predictive law.This method combined GPC and the SMC with their respective advantages,so it could be applied to time-delay process,making the control system more robust.Simulation experiments show that this algorithm can well track the temperature variation for the batch dyeing process.展开更多
The coarse-grained WE54 magnesium alloy was heat treated in order to have minimum hardness minimizing the effects of precipitates and solid solution. Friction stir processing(FSP) was applied in severe conditions to o...The coarse-grained WE54 magnesium alloy was heat treated in order to have minimum hardness minimizing the effects of precipitates and solid solution. Friction stir processing(FSP) was applied in severe conditions to obtain fine, equiaxed and highly misoriented grains, with grain sizes even less than 1 μm. The high severity of processing demonstrated to have a strong impact in the microstructure. Consequently,the processed materials exhibited excellent superplasticity at the high strain rate 10^(-2)s^(-1), and temperatures between 300 and 400 ℃. The maximum tensile superplastic elongation of 756% was achieved at 400 ℃ thanks to the operation of grain boundary sliding mechanism(GBS). Besides the new data obtained through tensile testing, the paper deals with a transcendental question regarding the large differences in strain rate values at a given stress in the superplastic regime at maximum elongation compared to other magnesium-based alloys. With this is mind, 19 magnesium alloys from 22 different investigations were analyzed to give some light to this behavior that never was treated before. It is proposed that this behavior has to be attributed to the accommodation process, necessary for GBS to occur, which is hindered by reinforcing solutes.展开更多
Affected by typhoons over years, Fujian Province in Southeast China has developed a large number of shallow landslides, causing a long-term concern for the local government. The study on shallow landslide is not only ...Affected by typhoons over years, Fujian Province in Southeast China has developed a large number of shallow landslides, causing a long-term concern for the local government. The study on shallow landslide is not only helpful to the local government in disaster prevention, but also the theoretical basis of regional early warning technology. To determine the whole-process characteristics and failure mechanisms of flow-slide failure of granite residual soil slopes, we conducted a detailed hazard investigation in Minqing County, Fujian Province, which was impacted by Typhoon Lupit-induced heavy rainfall in August 2021. Based on the investigation and preliminary analysis results, we conducted indoor artificial rainfall physical model tests and obtained the whole-process characteristics of flow-slide failure of granite residual soil landslides. Under the action of heavy rainfall, a granite residual soil slope experiences initial deformation at the slope toe and exhibits development characteristics of continuous traction deformation toward the middle and upper parts of the slope. The critical volumetric water content during slope failure is approximately 53%. Granite residual soil is in a state of high volumetric water content under heavy rainfall conditions, and the shear strength decreases, resulting in a decrease in stability and finally failure occurrence. The new free face generated after failure constitutes an adverse condition for continued traction deformation and failure. As the soil permeability(cm/h) is less than the rainfall intensity(mm/h), and it is difficult for rainwater to continuously infiltrate in short-term rainfall, the influence depth of heavy rainfall is limited. The load of loose deposits at the slope foot also limits the development of deep deformation and failure. With the continuous effect of heavy rainfall, the surface runoff increases gradually, and the influence mode changes from instability failure caused by rainfall infiltration to erosion and scouring of surface runoff on slope surface. Transportation of loose materials by surface runoff is an important reason for prominent siltation in disaster-prone areas.展开更多
Tangjiashan landslide is a typical high-speed landslide hosted on consequent bedding rock. The landslide was induced by Wenchuan earthquake at a medium-steep hill slope. The occurrence of Tangjiashan landslide was bas...Tangjiashan landslide is a typical high-speed landslide hosted on consequent bedding rock. The landslide was induced by Wenchuan earthquake at a medium-steep hill slope. The occurrence of Tangjiashan landslide was basically controlled by the tectonic structure, topography, stratum lithology, slope structure, seismic waves, and strike of river. Among various factors, the seismic loading with great intensity and long duration was dominant. The landslide initiation exhibited the local amplification effect of seismic waves at the rear of the slope, the dislocation effect on the fault, and the shear failure differentiating effect on the regions between the soft and the hard layers. Based on field investigations and with the employment of the distinct element numerical simulation program UDEC (universal distinct element code), the whole kinetic sliding process of Tan iashan landslide was represented and the formation mechanism of the consequent rock landslide under seismic loading was studied. The results are helpful for understanding seismic dynamic responses of consequent bedding rock slopes, where the slope stability could be governed by earthquakes.展开更多
Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely...Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely affected by meteorological conditions.Key process parameters such as intake composition,flow rate,and real-time data of post-combustion residues are difficult to measure or exhibit lag in data availability.As a result,the control methods for these flares are limited,leading to poor control effectiveness.To address this issue,this paper proposes an adaptive sliding mode control method based on the radial basis function(RBF)network.Firstly,the operational characteristics of the petrochemical flare combustion process are analyzed,and a control model for the combustion process is established based on carbon dioxide detection.Secondly,an RBF neural network-based unknown function approximator is designed to identify the nonlinear part of the actual operating system.Finally,by combining the control model of the petrochemical flare combustion and designing the RBF sliding mode controller with its adaptive control law,fast and stable control of the flare combustion state is achieved.Simulation results demonstrate that the designed control strategy can achieve tracking control of the petrochemical flare combustion state,and the adaptive law also accomplishes system identification.展开更多
A high-performance, distributed, complex-event processing en- gine with improved scalability is proposed. In this new engine, the stateless proeessing node is combined with distributed stor- age so that scale and perf...A high-performance, distributed, complex-event processing en- gine with improved scalability is proposed. In this new engine, the stateless proeessing node is combined with distributed stor- age so that scale and performance can be linearly expanded. This design prevents single node failure and makes the system highly reliable.展开更多
A defining characteristic of continuous queries over on-line data streams,possibly bounded by sliding windows,is the potentially infinite and time-evolving nature of their inputs and outputs.For different update patte...A defining characteristic of continuous queries over on-line data streams,possibly bounded by sliding windows,is the potentially infinite and time-evolving nature of their inputs and outputs.For different update patterns of continuous queries,suitable data structures bring great query processing efficiency.In this paper,we proposed a data structure suitable for weak nonmonotonic update pattern in which the lifetime of each tuple is known at generation time,but the length of lifetime is not necessarily the same.The new data structure combined the ladder queue with the feature of weak non-monotonic update pattern.The experiment results show that the new data structure performs much better than the traditional calendar queue in many cases.展开更多
为进一步认识当前数值预报模式的预报能力,选取2018—2020年发生在四川盆地的47次强降水过程进行分型,再基于多源降水融合产品和地面观测资料,通过TS评分、时空滑动等方法对欧洲中期天气预报中心(European Centre for Medium-Range Weat...为进一步认识当前数值预报模式的预报能力,选取2018—2020年发生在四川盆地的47次强降水过程进行分型,再基于多源降水融合产品和地面观测资料,通过TS评分、时空滑动等方法对欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)数值预报模式、国家气象中心区域中尺度数值预报模式(China Meteorological Administration Mesoscale Model,CMA_MESO)和西南区域数值预报系统(Southwest Center WRF ADAS Real-time Modeling System,SWC_WARMS)在强降水过程范围、强度、极值、时间和位移偏差等方面的预报能力进行检验评估。结果表明,各模式08:00(北京时,下同)预报优于20:00预报,ECMWF对中雨和大雨预报更优,SWC_WARMS的暴雨量级评分更高。各模式对中雨的预报范围普遍较实况偏大,随着降水量级增大,逐渐转为低估,其中SWC_WARMS更接近实况。对于降水强度,ECMWF和CMA_MESO的平均降水量和极值普遍较实况偏小,SWC_WARMS更接近实况。3种模式时间偏差不明显,仅个别起报时次有-6~3 h的时间偏差;ECMWF的位移偏差最小,纬向上ECMWF和SWC_WARMS以偏北为主,经向上ECMWF以偏西为主,CMA_MESO和SWC_WARMS以偏东为主。展开更多
针对岩体结构面发育特征的不确定性,提出一种岩质边坡异形滑动面搜索方法 .以Ⅲ,Ⅳ结构面岩体为研究对象,结合GeoSMA-3D(geotechnical structure and model analysis-3D)程序中块体切割和关键块体判别模块,将滑坡体设定为几何多面体.岩...针对岩体结构面发育特征的不确定性,提出一种岩质边坡异形滑动面搜索方法 .以Ⅲ,Ⅳ结构面岩体为研究对象,结合GeoSMA-3D(geotechnical structure and model analysis-3D)程序中块体切割和关键块体判别模块,将滑坡体设定为几何多面体.岩体的内部块体组合形成多面体,以多面体的表面表征滑动面.引入层次分析法,建立滑动面准定量化评价准则.以小盘岭边坡为例,将异形滑动面判定准则导入GeoSMA-3D程序中,研究表明边坡存在6个关键块体,组合滑动面有3个,潜在滑动面安全系数为1.046,滑动面几何形态与实际边坡拟合度高达95%,验证了岩质边坡滑动面搜索方法的合理性.展开更多
Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few s...Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few scholars have explored the unstable evolution of railway slopes under the joint action of rainfall-vibration.Based on the model test of sandy soil slope,the unstable evolution process of slope under locomotive vibration,rainfall,and rainfall-vibration joint action conditions was simulated in this paper.By comparing and analyzing the variation trends of soil pressure and water content of slope under these conditions,the change laws of pore pressure under the influence of vibration and rainfall were explored.The main control factors affecting the stability of slope structure under the joint action conditions were further defined.Combined with the slope failure phenomena under these three conditions,the causes of slope instability resulting from each leading factor were clarified.Finally,according to the above conclusions,the unstable evolution of the slope under the rainfall-vibration joint action was determined.The test results show that the unstable evolution process of sandy soil slope,under the rainfall-vibration joint action,can be divided into:rainfall erosion cracking,vibration promotion penetrating,and slope instability sliding three stages.In the process of slope unstable evolution,rainfall and vibration play the roles of inducing and promoting slide respectively.In addition,the deep cracks,which are the premise for the formation of the sliding surface,and the violent irregular fluctuation of soil pressure,which reflects the near penetration of the sliding surface,constitute the instability characteristics of the railway slope together.This paper reveals the unstable evolution of sandy soil slopes under the joint action of rainfall-vibration,hoping to provide the theoretical basis for the early warning and prevention technology of railway slopes.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51034005)National High Technology Research and Development Program of China (No. 2012AA062004)Program for New Century Excellent Talents in University of China (No. NCET-13-1022)
文摘To study the stability of the west slope in Buzhaoba Open-Pit Mine and determine the aging stability coefficient during slide mass development, the deformation band of the west slope and the slide mass structure of the 34,600 profile are obtained on the basis of hydrology, geology, and monitoring data.The residual thrust method is utilized to calculate the stability coefficients, which are 1.225 and 1.00 under sound and transfixion conditions, respectively. According to the rock damage and fragmentation and the principle of mechanical parameter degradation, the mechanical models of the slide mass development of the hard and soft rock slopes are established. An integrated model for calculating the slope stability coefficient is built considering water, vibration, and other external factors that pertain to the structural plane damage mechanism and the generating mechanism of the sliding mass. The change curve of the stability coefficient in the slide mass development is obtained from the relevant analyses,and afterwards, the stability control measures are proposed. The analysis results indicate that in the cracking stage of the hard rock, the slope stability coefficient decreases linearly with the increase in the length Lbof the hard rock crack zone. The linear slope is positively correlated to rock cohesion c. In the transfixion stage of the soft rock, the decrease speed of the stability coefficient is positively correlated to the residual strength of the soft rock. When the slope is stable, the stability coefficient is in a quadratic-linear relationship with the decreased height Dh of the side slope and in a linear relationship with anchoring force P.
基金National Natural Science Foundation of China(No.61074154)
文摘The batch dyeing process is a typical nonlinear process with time-delay,where precise controlling of temperature plays a vital role on the dyeing quality.Because the accuracy and robustness of the commonly used proportion integration differentiation(PID) algorithm had been limited,a novel method was developed to precisely control the heating and cooling stages for batch dyeing process based on predictive sliding mode control(SMC) algorithm.Firstly,a special predictive sliding mode model was constructed according to the principle of generalized predictive control(GPC);secondly,an appropriate reference trajectory for SMC was designed based on the improved approaching law;finally,the predictive sliding mode model and the Diophantine equation were used to predict the output and then the optimized control law was derived using the generalized predictive law.This method combined GPC and the SMC with their respective advantages,so it could be applied to time-delay process,making the control system more robust.Simulation experiments show that this algorithm can well track the temperature variation for the batch dyeing process.
基金Financial support from MINECO (Spain), Project MAT2015–68919-C3–1-R (MINECO/FEDER)CENIM, CSIC, for a contract funded by the aforementioned projectMINECO for a FPI fellowship, number BES2013–063963 (MINECO/FEDER/ESF)。
文摘The coarse-grained WE54 magnesium alloy was heat treated in order to have minimum hardness minimizing the effects of precipitates and solid solution. Friction stir processing(FSP) was applied in severe conditions to obtain fine, equiaxed and highly misoriented grains, with grain sizes even less than 1 μm. The high severity of processing demonstrated to have a strong impact in the microstructure. Consequently,the processed materials exhibited excellent superplasticity at the high strain rate 10^(-2)s^(-1), and temperatures between 300 and 400 ℃. The maximum tensile superplastic elongation of 756% was achieved at 400 ℃ thanks to the operation of grain boundary sliding mechanism(GBS). Besides the new data obtained through tensile testing, the paper deals with a transcendental question regarding the large differences in strain rate values at a given stress in the superplastic regime at maximum elongation compared to other magnesium-based alloys. With this is mind, 19 magnesium alloys from 22 different investigations were analyzed to give some light to this behavior that never was treated before. It is proposed that this behavior has to be attributed to the accommodation process, necessary for GBS to occur, which is hindered by reinforcing solutes.
基金funded by the National Natural Science Foundation of China(Grant Nos.U2005205,41977252)National Key R&D Program of China(2018YFC1505503)+1 种基金Open Fund of Key Laboratory of Geohazard Prevention of Hilly Mountains,Ministry of Natural Resources(Fujian Key Laboratory of Geohazard Prevention)(FJKLGH2022K001)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(Grant No.SKLGP2020Z001)。
文摘Affected by typhoons over years, Fujian Province in Southeast China has developed a large number of shallow landslides, causing a long-term concern for the local government. The study on shallow landslide is not only helpful to the local government in disaster prevention, but also the theoretical basis of regional early warning technology. To determine the whole-process characteristics and failure mechanisms of flow-slide failure of granite residual soil slopes, we conducted a detailed hazard investigation in Minqing County, Fujian Province, which was impacted by Typhoon Lupit-induced heavy rainfall in August 2021. Based on the investigation and preliminary analysis results, we conducted indoor artificial rainfall physical model tests and obtained the whole-process characteristics of flow-slide failure of granite residual soil landslides. Under the action of heavy rainfall, a granite residual soil slope experiences initial deformation at the slope toe and exhibits development characteristics of continuous traction deformation toward the middle and upper parts of the slope. The critical volumetric water content during slope failure is approximately 53%. Granite residual soil is in a state of high volumetric water content under heavy rainfall conditions, and the shear strength decreases, resulting in a decrease in stability and finally failure occurrence. The new free face generated after failure constitutes an adverse condition for continued traction deformation and failure. As the soil permeability(cm/h) is less than the rainfall intensity(mm/h), and it is difficult for rainwater to continuously infiltrate in short-term rainfall, the influence depth of heavy rainfall is limited. The load of loose deposits at the slope foot also limits the development of deep deformation and failure. With the continuous effect of heavy rainfall, the surface runoff increases gradually, and the influence mode changes from instability failure caused by rainfall infiltration to erosion and scouring of surface runoff on slope surface. Transportation of loose materials by surface runoff is an important reason for prominent siltation in disaster-prone areas.
基金Supported by the National Natural Science Foundation of China (40772175,40972175)the Scientific Research Fund of Southwest Jiaotong University(2008-A01)+1 种基金the Doctoral Student Innovation Fund of Southwest Jiaotong Universitythe National Natural Science Foundation of China-Yunan Joint Fund (U1033601)
文摘Tangjiashan landslide is a typical high-speed landslide hosted on consequent bedding rock. The landslide was induced by Wenchuan earthquake at a medium-steep hill slope. The occurrence of Tangjiashan landslide was basically controlled by the tectonic structure, topography, stratum lithology, slope structure, seismic waves, and strike of river. Among various factors, the seismic loading with great intensity and long duration was dominant. The landslide initiation exhibited the local amplification effect of seismic waves at the rear of the slope, the dislocation effect on the fault, and the shear failure differentiating effect on the regions between the soft and the hard layers. Based on field investigations and with the employment of the distinct element numerical simulation program UDEC (universal distinct element code), the whole kinetic sliding process of Tan iashan landslide was represented and the formation mechanism of the consequent rock landslide under seismic loading was studied. The results are helpful for understanding seismic dynamic responses of consequent bedding rock slopes, where the slope stability could be governed by earthquakes.
基金gratefully acknowledge the financial support from the Scientific and Technological Innovation 2030-“New Generation Artificial Intelligence”Major Project(2021ZD0112301)National Natural Science Foundation of China(62273011,62076013,62303027).
文摘Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely affected by meteorological conditions.Key process parameters such as intake composition,flow rate,and real-time data of post-combustion residues are difficult to measure or exhibit lag in data availability.As a result,the control methods for these flares are limited,leading to poor control effectiveness.To address this issue,this paper proposes an adaptive sliding mode control method based on the radial basis function(RBF)network.Firstly,the operational characteristics of the petrochemical flare combustion process are analyzed,and a control model for the combustion process is established based on carbon dioxide detection.Secondly,an RBF neural network-based unknown function approximator is designed to identify the nonlinear part of the actual operating system.Finally,by combining the control model of the petrochemical flare combustion and designing the RBF sliding mode controller with its adaptive control law,fast and stable control of the flare combustion state is achieved.Simulation results demonstrate that the designed control strategy can achieve tracking control of the petrochemical flare combustion state,and the adaptive law also accomplishes system identification.
文摘A high-performance, distributed, complex-event processing en- gine with improved scalability is proposed. In this new engine, the stateless proeessing node is combined with distributed stor- age so that scale and performance can be linearly expanded. This design prevents single node failure and makes the system highly reliable.
基金Funded by the Natural Science Foundation of China (No. 60873030)National High Technology Research and Development Program of China (No. 2007AA01Z309)Defense Pre-Research Foundation of China (No. 9140A04010209JW0504 and No. 9140A15040208JW0501)
文摘A defining characteristic of continuous queries over on-line data streams,possibly bounded by sliding windows,is the potentially infinite and time-evolving nature of their inputs and outputs.For different update patterns of continuous queries,suitable data structures bring great query processing efficiency.In this paper,we proposed a data structure suitable for weak nonmonotonic update pattern in which the lifetime of each tuple is known at generation time,but the length of lifetime is not necessarily the same.The new data structure combined the ladder queue with the feature of weak non-monotonic update pattern.The experiment results show that the new data structure performs much better than the traditional calendar queue in many cases.
文摘针对岩体结构面发育特征的不确定性,提出一种岩质边坡异形滑动面搜索方法 .以Ⅲ,Ⅳ结构面岩体为研究对象,结合GeoSMA-3D(geotechnical structure and model analysis-3D)程序中块体切割和关键块体判别模块,将滑坡体设定为几何多面体.岩体的内部块体组合形成多面体,以多面体的表面表征滑动面.引入层次分析法,建立滑动面准定量化评价准则.以小盘岭边坡为例,将异形滑动面判定准则导入GeoSMA-3D程序中,研究表明边坡存在6个关键块体,组合滑动面有3个,潜在滑动面安全系数为1.046,滑动面几何形态与实际边坡拟合度高达95%,验证了岩质边坡滑动面搜索方法的合理性.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.42027806)the Key Programme of the Natural Science Foundation of China(Grant No.41630639)National Natural Science Foundation of China General Program(Grant No.42372324).
文摘Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few scholars have explored the unstable evolution of railway slopes under the joint action of rainfall-vibration.Based on the model test of sandy soil slope,the unstable evolution process of slope under locomotive vibration,rainfall,and rainfall-vibration joint action conditions was simulated in this paper.By comparing and analyzing the variation trends of soil pressure and water content of slope under these conditions,the change laws of pore pressure under the influence of vibration and rainfall were explored.The main control factors affecting the stability of slope structure under the joint action conditions were further defined.Combined with the slope failure phenomena under these three conditions,the causes of slope instability resulting from each leading factor were clarified.Finally,according to the above conclusions,the unstable evolution of the slope under the rainfall-vibration joint action was determined.The test results show that the unstable evolution process of sandy soil slope,under the rainfall-vibration joint action,can be divided into:rainfall erosion cracking,vibration promotion penetrating,and slope instability sliding three stages.In the process of slope unstable evolution,rainfall and vibration play the roles of inducing and promoting slide respectively.In addition,the deep cracks,which are the premise for the formation of the sliding surface,and the violent irregular fluctuation of soil pressure,which reflects the near penetration of the sliding surface,constitute the instability characteristics of the railway slope together.This paper reveals the unstable evolution of sandy soil slopes under the joint action of rainfall-vibration,hoping to provide the theoretical basis for the early warning and prevention technology of railway slopes.