期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
The Influence of Normal Load and Sliding Speed on Frictional Properties of Skin 被引量:5
1
作者 Wei Tang Shi-rong Ge +2 位作者 Hua Zhu Xi-chuan Cao Ning Li 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第1期33-38,共6页
The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the friction... The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the frictional properties of skin and its possible mechanism, tests were carded out on a multi-specimen friction tester. When the normal load increases from 0.1 N to 0.9 N, normal displacement and the friction coefficient of skin increase. The friction coefficient is dependent on the load, indicating that both adhesion and deformation contribute to the friction behaviour. The deformation friction was interpreted using the plough model of friction. When sliding speed increases from 0.5 mm·s^-1 to 4 mm·s^-1, the friction coefficient increases and "stick-slip" phenomena increase, indicating that hysteretic friction contributes to the friction. The hysteretic friction was in- terpreted using schematic of energy translation during the rigid spherical probe sliding on the soft skin surface, which provides an explanation for the influence of the sliding speed on the frictional characteristics of the skin. 展开更多
关键词 normal load sliding speed friction coefficient SKIN
下载PDF
Adaptive Gain Tuning Rule for Nonlinear Sliding-mode Speed Control of Encoderless Three-phase Permanent Magnet Assisted Synchronous Motor 被引量:1
2
作者 Ghada A.Abdel Aziz Rehan Ali Khan 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第3期301-310,共10页
In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous r... In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions. 展开更多
关键词 Permanent magnet assisted synchronous reluctance motor Nonlinear sliding mode speed control speed estimation Parameter uncertainties sliding mode estimator
下载PDF
Influence of Normal Load,Sliding Speed and Ambient Temperature on Wear Resistance of ZG42CrMo 被引量:4
3
作者 ZHANG Jian 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2012年第4期69-74,共6页
To investigate the wear resistance of ZG42CrMo in industrial application,the wear behaviors under different normal loads,sliding speeds and ambient temperatures were simulated by an MMU-5G abrasion tester to acquire t... To investigate the wear resistance of ZG42CrMo in industrial application,the wear behaviors under different normal loads,sliding speeds and ambient temperatures were simulated by an MMU-5G abrasion tester to acquire the friction coefficients and wear rates,with the morphology of worn surface observed by scanning electron microscopy(SEM) and chemical composition of worn surface and debris analyzed by X-ray energy dispersive spectroscopy(EDS).Combine with the theory of tribology,finally the regular of environmental factors’ influence on material wear behaviors is determined.The results show that the increase of load decreases wear resistance significantly,when the pressure reaches a certain extent,severe spalling occurs on the worn surface;the changes of speed result in the changes of size of abrasive debris,and then effect the wear behaviors,in the increasing process of speed,the wear rate increases firstly and then decreases;the rise of temperature causes changes in wear mechanism,bring forth oxidation film on the worn surface,which leads to significant improvement of the wear resistance of materials under high temperature compared to that under low temperature 展开更多
关键词 ZG42CrMo wear resistance normal load sliding speed ambient temperature
原文传递
Effect of sliding speed on elevated-temperature wear behavior of AISI H13 steel
4
作者 Yin Zhou Wei Jiang 《Journal of Iron and Steel Research(International)》 SCIE EI CSCD 2021年第9期1180-1189,共10页
Elevated-temperature wear tests were performed on AISI H13 steel under 50 and 100 r/min at 400–600℃.Through examining the morphology,structure and composition of worn surfaces as well as the microhardness at subsurf... Elevated-temperature wear tests were performed on AISI H13 steel under 50 and 100 r/min at 400–600℃.Through examining the morphology,structure and composition of worn surfaces as well as the microhardness at subsurfaces,the wear mechanisms in various sliding conditions were explored.H13 steel exhibited totally different elevated-temperature wear behavior at two sliding speeds while the high sliding speed would seriously deteriorate its wear resistance.During sliding at two sliding speeds,the wear rate of H13 steel decreased first and then rose with the increase in temperature and the wear rate reached the lowest value(lower than 1×10^(–6)mm^(3)/mm)at 500℃and 50 r/min.The wear rate at 600℃was lower than that at 400℃for 50 r/min,but the wear rate at 600℃was higher than that at 400℃for 100 r/min(except for 50 N).At 50 r/min,the wear rate decreased first and then increased with the increase in load.However,at 100 r/min,the wear rate monotonically increased with increasing load and reached 33×10^(–6)mm^(3)/mm at 600℃and 150 N,where severe wear occurred.In the other sliding conditions,severe wear did not appear with wear rate lower than 5×10^(–6)mm^(3)/mm.Oxidative mild wear merely prevailed at 500℃and 50 r/min and oxidative wear appeared in the other sliding conditions except for 600℃and 150 N,where severe plastic extrusion wear prevailed.The effect of sliding speed on wear behavior was attributed to the changes of tribo-oxide layers.During elevated-temperature sliding,tribo-oxide particles were more readily retained to form protective tribo-oxide layers on worn surfaces at the lower sliding speed than at the higher sliding speed,so as to protect from wear. 展开更多
关键词 AISI H13 steel Dry sliding wear Elevated-temperature wear Wear testing Surface analysis Wear mechanism sliding speed
原文传递
Determination of the Friction Coefficient in the Flat Strip Drawing Test
5
作者 Anvar Makhkamov 《Engineering(科研)》 2021年第11期595-604,共10页
Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces w... Current work is focused on the influence of friction in deep drawing process. Friction measurements were also conducted using a modified tribotester based on strip sliding between tools. Four different tool surfaces were tested under similar contact conditions regarding contact area, normal pressure, sliding speed, lubricant and surface characteristics to calculate the friction coefficient between the tool surface and a high strength low alloy steel sheet HSLA 380. The results showed that friction coefficient varies over a wide range with different lubricating conditions and different sliding velocities. For some sliding velocities, the coefficient of friction is stable and low, while for others it is unstable and higher. Results of the experiments reveal that this novel tribotester is a very useful tool to evaluate and compare the friction between steel sheet and tool surfaces in alloyed steel for cold working applications. The outcomes have only small dispersion within the different test series, which indicates a stable process with good repeatability. The test method enables comparison of different surface finishes and treatments, lubricants and coatings in terms of friction and galling under conditions similar to those found in sheet metal forming processes. The four different types of surfaces considered for this study were grinded, polished, nitrided and quenched/tempered. The main difference among the tested tools in this work was the surface roughness, which was found to have a strong influence on friction. 展开更多
关键词 TRIBOLOGY Friction ROUGHNESS Sheet Metal Forming LUBRICANT Steel Sheet Tool Surface Coefficient of Friction Normal Force sliding speed Contact Pressure Strip Drawing Test
下载PDF
Backstepping Control of Speed Sensorless Permanent Magnet Synchronous Motor Based on Slide Model Observer 被引量:10
6
作者 Cai-Xue Chen Yun-Xiang Xie Yong-Hong Lan 《International Journal of Automation and computing》 EI CSCD 2015年第2期149-155,共7页
This paper presents a backstepping control method for speed sensorless permanent magnet synchronous motor based on slide model observer. First, a comprehensive dynamical model of the permanent magnet synchronous motor... This paper presents a backstepping control method for speed sensorless permanent magnet synchronous motor based on slide model observer. First, a comprehensive dynamical model of the permanent magnet synchronous motor(PMSM) in d-q frame and its space-state equation are established. The slide model control method is used to estimate the electromotive force of PMSM under static frame, while the position of rotor and its actual speed are estimated by using phase loop lock(PLL) method. Next,using Lyapunov stability theorem, the asymptotical stability condition of the slide model observer is presented. Furthermore, based on the backstepping control theory, the PMSM rotor speed and current tracking backstepping controllers are designed, because such controllers display excellent speed tracking and anti-disturbance performance. Finally, Matlab simulation results show that the slide model observer can not only estimate the rotor position and speed of the PMSM accurately, but also ensure the asymptotical stability of the system and effective adjustment of rotor speed and current. 展开更多
关键词 Permanent magnet synchronous motor(PMSM) slide model observer backstepping control speed sensorless alternating current(AC).
原文传递
Effect of Bagasse ash reinforcement on the wear behaviour of Al-Cu-Mg/Bagasse ash particulate composites 被引量:2
7
作者 V.S. Aigbodion S.B. Hassan +1 位作者 G.B. Nyior T. Ause 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2010年第2期81-89,共9页
The effect of Bagasse ash (BAp) particle reinforcement on the wear behavior of Al-Cu- Mg alloy has been studied. Bagasse ash particles were varied from 0 wt pct-10 wt pct with interval of 2 wt pct. Unlubricated pin-... The effect of Bagasse ash (BAp) particle reinforcement on the wear behavior of Al-Cu- Mg alloy has been studied. Bagasse ash particles were varied from 0 wt pct-10 wt pct with interval of 2 wt pct. Unlubricated pin-on disc tests were conducted to examine the wear behaviour of the aluminium alloy/Bagasse ash particulate composites. The tests were conducted at varying loads, from 5 to 20 N and sliding speeds of 1.26 m/s, 2.51 m/s, 3.77 m/s and 5.02 m/s for a constant sliding distance of 5000 m. The results showed that the wear rates of the A1-Cu-Mg/BAp composites are lower than that of the matrix alloy and further decrease with increasing Bagasse ash content. Wear rate increases as the sliding speed and applied load increase. The microstructure of the worn surface revealed that a large amount of plastic deformation appeared on the surface of the unreinforced alloy. While Bagasse ash reinforced Al-Cu-Mg alloy showed worn out surface that is not smooth, and grooves, scratches and parallel lines were observed. A combination of adhesion and delamination wear was in operation. These results show that improve wear properties is achievable for the aluminium alloy by the addition of Bagasse ash particles as reinforcement material. 展开更多
关键词 Al-Cu-Mg alloy Bagasse ash COMPOSITES LOAD sliding speed and Wear
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部