The method to design sliding-mode observers for systems with unknown inputs and measurement disturbances is presented in the paper. An augmented system is constructed by viewing the measurement disturbances as unknow ...The method to design sliding-mode observers for systems with unknown inputs and measurement disturbances is presented in the paper. An augmented system is constructed by viewing the measurement disturbances as unknow inputs. For such an augmented system, the so-called observer matching condition is not satisfied. Based on the construction of auxiliary outputs, the observer matching condition may be satisfied. High-order sliding-mode differentiators are developed to obtain the estimates of those unmeasurable variables contained in the auxiliary output vector. Employing the estimate of auxiliary output vector, a sliding-mode observer is designed. The simulation results to a real model show that the proposed method is effective.展开更多
A nonlinear robust control strategy is proposed to force an underactuated surface ship to follow a predefined path with uncertain environmental disturbance and parameters.In the controller design,a high-gain observer ...A nonlinear robust control strategy is proposed to force an underactuated surface ship to follow a predefined path with uncertain environmental disturbance and parameters.In the controller design,a high-gain observer is used to estimate velocities,thus only position and yaw angle measurements are required.The control problem of underactuated system is transformed into a control of fully actuated system through adopting an improved line-of-sight(LOS) guidance law.A sliding-mode controller is designed to eliminate the yaw angle error,and provide the control system robustness.The control law is proved semi-globally exponentially stable(SGES) by applying Lyapunov stability theory,and numerical simulation using real data of a monohull ship illustrates the effectiveness and robustness of the proposed methodology.展开更多
The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of ...The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of the system,a fast non-singular end sliding mode(FNTSM)surface function based on traditional NTSM control is developed.The theoretical analysis proves that the FNTSM surface function has a faster dynamic response and more finite-time convergence.In addition,for the self-vibration problem caused by high sliding mode switching gain,an FNTSM control method with anti-disturbance capability was designed based on the linear disturbance observer(DO),i.e.the FNTSMDO method was employed to devise the PMSM speed regulator.The comparative simulation and experiment results with traditional PI control and NTSM control methods indicate that the FNTSMDO method could improve the dynamic performance and anti-interference of the system.展开更多
In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variation...In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.展开更多
Conventional sliding-mode observer(SMO)-based grid-voltage observation methods often require a low-pass filter(LPF)to remove high-frequency sliding-mode noise.However,a complicated phase-and amplitude-compensation met...Conventional sliding-mode observer(SMO)-based grid-voltage observation methods often require a low-pass filter(LPF)to remove high-frequency sliding-mode noise.However,a complicated phase-and amplitude-compensation method,which is highly sensitive to the DC-offset,is required.A frequency-adaptive dual second-order generalized integrator(SOGI)can be used to replace the LPF,eliminating the compensation link and the effects of the DC-offset;however,strong coupling is introduced between the front-end SOGI block and back-end phase-locked loop(PLL)block,thereby reducing the dynamic performance.To solve this problem,this study proposes an SMO-based grid-voltage observation method with a frequency-fixed dual SOGI and cross-compensated PLL that can eliminate the frequency coupling between the front-end SOGI block and back-end PLL blocks,thereby increasing its dynamic performance.In this study,the phase and amplitude are compensated simultaneously using the proposed cross-compensation method,achieving an accurate observation of the grid voltage under off-nominal frequencies.An analysis of the small-signal model theoretically verified that the proposed method has good dynamic performance.Finally,the superiority of the proposed method is verified through comparative experiments.展开更多
This study in westigatn the fault detection and fault atimation problem of a quadrotar with disturbanea.A synthesiand design of adaptive and sliding mode obeerver is propoeed to addres the efkctive detection and atima...This study in westigatn the fault detection and fault atimation problem of a quadrotar with disturbanea.A synthesiand design of adaptive and sliding mode obeerver is propoeed to addres the efkctive detection and atimation of inepient faulta.First,the decom pased subaystems are obtalned through the coardinate transdormation,and the in Stial and ineipkent faults are sea rated from the disturbanon.Second,an adaptive obeerver is applied to the decamposd un petubad subaystem to atimate ineipient faults,while the sliding mode obearver remalns robust to disturbanos for the perturbed subaytem.Lyapumov stahility theory mmas the mavergenae o dynamic erors and the stability of the quadrotor ayatem.Pinally,the dfc tiveess of the proposed synthated algod thm of ineipient fault detection is weified by the quadrotor simulation.展开更多
Part II proposes a cascaded sliding-mode observer based output feedback controller for control of multi-input multi-output(MIMO)system.The controller,designed based on feedback linearization control strategy,requires ...Part II proposes a cascaded sliding-mode observer based output feedback controller for control of multi-input multi-output(MIMO)system.The controller,designed based on feedback linearization control strategy,requires the information of the states and perturbations of the system for realization of disturbance rejection.The observer studied in part I[1]is then utilized to provide the accurate estimates of states and perturbations.As is proved,the proposed observer-based controller can ensure Lyapunov stability of the closed-loop system.Also,it can be used for output tracking control.Simulation studies are carried out on a single-wind-energy-conversion-system-infinite-bus(SWNCSIB)system to test the performances of the proposed observer-based output feedback controller.展开更多
This paper proposes a cascaded sliding-mode observer for systems with high relative degree and studies its applications in output feedback controller design.In part I,the working principle and parameter design of the ...This paper proposes a cascaded sliding-mode observer for systems with high relative degree and studies its applications in output feedback controller design.In part I,the working principle and parameter design of the proposed observer are discussed in detail.It is proved that,within a sufficiently short period of time,the states of the proposed observer will reach the intersection of all the sliding surfaces.On sliding surfaces,the observation error of the proposed observer will converge to sufficiently small values.Compared with traditional high-gain observers,the proposed observer has smaller gain coefficients.In addition,the peaking-phenomenon occurred in the proposed observer is less severe.Furthermore,the proposed observer has a convergence rate of observation error as fast as that of traditional high-gain observers.Simulation studies are carried out on a fifth-order system to verify the properties of the proposed observer.展开更多
The unmanned dual-arm aerial manipulator system is composed of a multirotor unmanned aerial vehicle(UAV)and two manipulators.Compared to a single manipulator,dual-arm always provides greater°exibility and versati...The unmanned dual-arm aerial manipulator system is composed of a multirotor unmanned aerial vehicle(UAV)and two manipulators.Compared to a single manipulator,dual-arm always provides greater°exibility and versatility in both goods delivery and complex task execution.However,the practical application of the system is limited due to nonlinearities and complex dynamic coupling behavior between the multirotor and the manipulator,as well as the one between the inner and outer loop of the multirotor.In this paper,a holistic model of the dual-arm aerial manipulator system is¯rst derived with complete model information.Subsequently,an adaptive sliding-mode disturbance observer(ASMDO)is proposed to handle external disturbances and unmeasurable disturbances caught by unmeasurable angular velocity and acceleration of the manipulators.Moreover,for safety concerns and transient performance requirements,the state constraints should be guaranteed.To this end,an auxiliary term composed of constrained variable signals is introduced.Then,the performance of the designed method is proven by rigorous analysis.Finally,the proposed method is validated through two sets of simulation tests.展开更多
基金Funded by the National Natural Science Foundation(No.61203299/F030506)
文摘The method to design sliding-mode observers for systems with unknown inputs and measurement disturbances is presented in the paper. An augmented system is constructed by viewing the measurement disturbances as unknow inputs. For such an augmented system, the so-called observer matching condition is not satisfied. Based on the construction of auxiliary outputs, the observer matching condition may be satisfied. High-order sliding-mode differentiators are developed to obtain the estimates of those unmeasurable variables contained in the auxiliary output vector. Employing the estimate of auxiliary output vector, a sliding-mode observer is designed. The simulation results to a real model show that the proposed method is effective.
基金Projects(61004008,51509055)supported by the National Natural Science Foundation of ChinaProject(61422230302162223013)supported by the Laboratory of Science and Technology on Water Jet Propulsion,China
文摘A nonlinear robust control strategy is proposed to force an underactuated surface ship to follow a predefined path with uncertain environmental disturbance and parameters.In the controller design,a high-gain observer is used to estimate velocities,thus only position and yaw angle measurements are required.The control problem of underactuated system is transformed into a control of fully actuated system through adopting an improved line-of-sight(LOS) guidance law.A sliding-mode controller is designed to eliminate the yaw angle error,and provide the control system robustness.The control law is proved semi-globally exponentially stable(SGES) by applying Lyapunov stability theory,and numerical simulation using real data of a monohull ship illustrates the effectiveness and robustness of the proposed methodology.
基金supported in part by the National Natural Science Foundation of China under Grant 51507188Doctoral Research Startup Foundation of Hubei University of Technology under Grant XJ2021000302。
文摘The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of the system,a fast non-singular end sliding mode(FNTSM)surface function based on traditional NTSM control is developed.The theoretical analysis proves that the FNTSM surface function has a faster dynamic response and more finite-time convergence.In addition,for the self-vibration problem caused by high sliding mode switching gain,an FNTSM control method with anti-disturbance capability was designed based on the linear disturbance observer(DO),i.e.the FNTSMDO method was employed to devise the PMSM speed regulator.The comparative simulation and experiment results with traditional PI control and NTSM control methods indicate that the FNTSMDO method could improve the dynamic performance and anti-interference of the system.
基金Supported by the National Natural Science Foundation of China(No.11603024)
文摘In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.
基金Supported by the Outstanding Youth Science Foundation of Henan Province(242300421074)Henan Province Key R&D Project(241111210400,241111242300).
文摘Conventional sliding-mode observer(SMO)-based grid-voltage observation methods often require a low-pass filter(LPF)to remove high-frequency sliding-mode noise.However,a complicated phase-and amplitude-compensation method,which is highly sensitive to the DC-offset,is required.A frequency-adaptive dual second-order generalized integrator(SOGI)can be used to replace the LPF,eliminating the compensation link and the effects of the DC-offset;however,strong coupling is introduced between the front-end SOGI block and back-end phase-locked loop(PLL)block,thereby reducing the dynamic performance.To solve this problem,this study proposes an SMO-based grid-voltage observation method with a frequency-fixed dual SOGI and cross-compensated PLL that can eliminate the frequency coupling between the front-end SOGI block and back-end PLL blocks,thereby increasing its dynamic performance.In this study,the phase and amplitude are compensated simultaneously using the proposed cross-compensation method,achieving an accurate observation of the grid voltage under off-nominal frequencies.An analysis of the small-signal model theoretically verified that the proposed method has good dynamic performance.Finally,the superiority of the proposed method is verified through comparative experiments.
基金supported by the National Key R&D Program of China(2018AAA0102804)Shanghai Sailing Program(21YF1414000)+1 种基金International Corporation Project of Shanghai Science and Technology Commission(21190780300)and National Natural Science Foundation of China(62173218).
文摘This study in westigatn the fault detection and fault atimation problem of a quadrotar with disturbanea.A synthesiand design of adaptive and sliding mode obeerver is propoeed to addres the efkctive detection and atimation of inepient faulta.First,the decom pased subaystems are obtalned through the coardinate transdormation,and the in Stial and ineipkent faults are sea rated from the disturbanon.Second,an adaptive obeerver is applied to the decamposd un petubad subaystem to atimate ineipient faults,while the sliding mode obearver remalns robust to disturbanos for the perturbed subaytem.Lyapumov stahility theory mmas the mavergenae o dynamic erors and the stability of the quadrotor ayatem.Pinally,the dfc tiveess of the proposed synthated algod thm of ineipient fault detection is weified by the quadrotor simulation.
基金supported in part by the State Key Program of National Natural Science Foundation of China under Grant No.U1866210the National Natural Science Foundation of China under Grant No.51807067Young Elite Scientists Sponsorship Program by CSEE under Grant No.CSEE-YESS-2018.
文摘Part II proposes a cascaded sliding-mode observer based output feedback controller for control of multi-input multi-output(MIMO)system.The controller,designed based on feedback linearization control strategy,requires the information of the states and perturbations of the system for realization of disturbance rejection.The observer studied in part I[1]is then utilized to provide the accurate estimates of states and perturbations.As is proved,the proposed observer-based controller can ensure Lyapunov stability of the closed-loop system.Also,it can be used for output tracking control.Simulation studies are carried out on a single-wind-energy-conversion-system-infinite-bus(SWNCSIB)system to test the performances of the proposed observer-based output feedback controller.
基金supported in part by the State Key Program of National Natural Science Foundation of China under Grant No.U1866210the National Natural Science Foundation of China under Grant No.51807067Young Elite Scientists Sponsorship Program by CSEE under Grant No.CSEE-YESS-2018.
文摘This paper proposes a cascaded sliding-mode observer for systems with high relative degree and studies its applications in output feedback controller design.In part I,the working principle and parameter design of the proposed observer are discussed in detail.It is proved that,within a sufficiently short period of time,the states of the proposed observer will reach the intersection of all the sliding surfaces.On sliding surfaces,the observation error of the proposed observer will converge to sufficiently small values.Compared with traditional high-gain observers,the proposed observer has smaller gain coefficients.In addition,the peaking-phenomenon occurred in the proposed observer is less severe.Furthermore,the proposed observer has a convergence rate of observation error as fast as that of traditional high-gain observers.Simulation studies are carried out on a fifth-order system to verify the properties of the proposed observer.
基金supported in part by the National Natural Science Foundation of China under Grant 62273187,and Grant 62233011in part by the Young Elite Scientists Sponsorship Program by Tianjin under Grant TJSQNTJ-2020-21in part by the Haihe Lab of ITAI under Grant 22HHXCJC00003.
文摘The unmanned dual-arm aerial manipulator system is composed of a multirotor unmanned aerial vehicle(UAV)and two manipulators.Compared to a single manipulator,dual-arm always provides greater°exibility and versatility in both goods delivery and complex task execution.However,the practical application of the system is limited due to nonlinearities and complex dynamic coupling behavior between the multirotor and the manipulator,as well as the one between the inner and outer loop of the multirotor.In this paper,a holistic model of the dual-arm aerial manipulator system is¯rst derived with complete model information.Subsequently,an adaptive sliding-mode disturbance observer(ASMDO)is proposed to handle external disturbances and unmeasurable disturbances caught by unmeasurable angular velocity and acceleration of the manipulators.Moreover,for safety concerns and transient performance requirements,the state constraints should be guaranteed.To this end,an auxiliary term composed of constrained variable signals is introduced.Then,the performance of the designed method is proven by rigorous analysis.Finally,the proposed method is validated through two sets of simulation tests.