期刊文献+
共找到1,076篇文章
< 1 2 54 >
每页显示 20 50 100
A Method Combining Numerical Analysis and Limit Equilibrium Theory to Determine Potential Slip Surfaces in Soil Slopes 被引量:6
1
作者 XIAO Shiguo YAN Liping CHENG Zhiqiang 《Journal of Mountain Science》 SCIE CSCD 2011年第5期718-727,共10页
This paper describes a precise method combining numerical analysis and limit equilibrium theory to determine potential slip surfaces in soil slopes. In this method, the direction of the critical slip surface at any po... This paper describes a precise method combining numerical analysis and limit equilibrium theory to determine potential slip surfaces in soil slopes. In this method, the direction of the critical slip surface at any point in a slope is determined using the Coulomb’s strength principle and the extremum principle based on the ratio of the shear strength to the shear stress at that point. The ratio, which is considered as an analysis index, can be computed once the stress field of the soil slope is obtained. The critical slip direction at any point in the slope must be the tangential direction of a potential slip surface passing through the point. Therefore, starting from a point on the top of the slope surface or on the horizontal segment outside the slope toe, the increment with a small distance into the slope is used to choose another point and the corresponding slip direction at the point is computed. Connecting all the points used in the computation forms a potential slip surface exiting at the starting point. Then the factor of safety for any potential slip surface can be computed using limit equilibrium method like Spencer method. After factors of safety for all the potential slip surfaces are obtained, the minimum one is the factor of safety for the slope and the corresponding potential slip surface is the critical slip surface of the slope. The proposed method does not need to pre-assume the shape of potential slip surfaces. Thus it is suitable for any shape of slip surfaces. Moreover the method is very simple to be applied. Examples are presented in this paper to illustrate the feasibility of the proposed method programmed in ANSYS software by macro commands. 展开更多
关键词 Soil slope Stress field Potential slip surface Slope stability Factor of safety Numerical analysis Limit equilibrium method ANSYS software
下载PDF
Evaluation of the possible slip surface of a highly heterogeneous rock slope using dynamic reduction method 被引量:2
2
作者 CHEN Guo-qing HUANG Run-qiu +3 位作者 ZHANG Feng-shou ZHU Zhen-fei SHI Yu-chuan WANG Jian-chao 《Journal of Mountain Science》 SCIE CSCD 2018年第3期672-684,共13页
A new method, the dynamic reduction method(DRM) combined with the strain-softening method, was applied to evaluate the possible slip surface of a highly heterogeneous rock slope of the Dagangshan hydropower station in... A new method, the dynamic reduction method(DRM) combined with the strain-softening method, was applied to evaluate the possible slip surface of a highly heterogeneous rock slope of the Dagangshan hydropower station in Southwest China.In DRM, only the strength of the failure elements is reduced and the softening reduction factor K is adopted to calculate the strength parameters. The simulation results calculated by DRM show that the further slip surface on the right slope of the Dagangshan hydropower station is limited in the middle part of the slope, while both SRM(strength reduction method) and LEM(limit equilibrium method) predict a failure surface which extends upper and longer. The observations and analysis from the three recorded sliding events indicate that the failure mode predicted by DRM is more likely the scenario.The results in this study illustrate that for highly heterogeneous slopes with geological discontinuities in different length scales, the proposed DRM can provide a reliable prediction of the location of the slip surface. 展开更多
关键词 Dynamic Reduction method Strainsoftening Highly heterogeneous rock slope slip surface Geological discontinuity Hydropower station
下载PDF
The study of slip line field and upper bound method based on associated flow and non-associated flow rules 被引量:2
3
作者 Zheng Yingren Deng Chujian Wang Jinglin 《Engineering Sciences》 EI 2010年第3期21-40,共20页
At present, associated flow rule of traditional plastic theory is adopted in the slip line field theory and upper bound method of geotechnical materials. So the stress characteristic line conforms to the velocity line... At present, associated flow rule of traditional plastic theory is adopted in the slip line field theory and upper bound method of geotechnical materials. So the stress characteristic line conforms to the velocity line. It is proved that geotechnical materials do not abide by the associated flow rule. It is impossible for the stress characteristic line to conform to the velocity line. Generalized plastic mechanics theoretically proved that plastic potential surface intersects the Mohr-Coulomb yield surface with an angle, so that the velocity line must be studied by non-associated flow rule. According to limit analysis theory, the theory of slip line field is put forward in this paper, and then the ultimate beating capacity of strip footing is obtained based on the associated flow rule and the non-associated flow nile individually. These two results are identical since the ultimate bearing capacity is independent of flow role. On the contrary, the velocity fields of associated and non-associated flow rules are different which shows the velocity field based on the associat- ed flow rule is incorrect. 展开更多
关键词 slip line field upper bound method associated flow rule non-associated flow rule generalized plastic theory
下载PDF
Rolling Force and Rolling Moment in Spline Cold Rolling Using Slip-line Field Method 被引量:9
4
作者 ZHANG Dawei LI Yongtang +1 位作者 FU Jianhua ZHENG Quangang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期688-695,共8页
Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination o... Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that: the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable; in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process; the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling. 展开更多
关键词 external spline cold rolling slip-line field method rolling force rolling moment
下载PDF
Upshot of ohmically dissipated Darcy-Forchheimer slip flow of magnetohydrodynamic Sutterby fluid over radiating linearly stretched surface in view of Cash and Carp method
5
作者 S. BILAL M. SOHAIL +2 位作者 R. NAZ M. Y. MALIK M. ALGHAMDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第6期861-876,共16页
The present work concerns the momentum and heat transmission of the electro-magnetohydrodynamic (E-MHD) boundary layer Darcy-Forchheimer flow of a Sutterby fluid over a linear stretching sheet with slip. The nonlinear... The present work concerns the momentum and heat transmission of the electro-magnetohydrodynamic (E-MHD) boundary layer Darcy-Forchheimer flow of a Sutterby fluid over a linear stretching sheet with slip. The nonlinear equations for the proposed model are analyzed numerically. Suitable techniques are used to transform the coupled nonlinear partial differential equations (PDEs) conforming to the forced balance law, energy, and concentration equations into a nonlinear coupled system of ordinary differential equations (ODEs). Numerical solutions of the transformed nonlinear system are obtained using a shooting method, improved by the Cash and Carp coefficients. The influence of important physical variables on the velocity, the temperature, the heat flux coefficient, and the skin-friction coefficient is verified and analyzed through graphs and tables. From the comprehensive analysis of the present work, it is concluded that by intensifying the magnitude of the Hartmann number, the momentum distribution decays, whereas the thermal profile of fluid increases. Furthermore, it is also shown that by aug- menting the values of the momentum slip parameter, the velocity profile diminishes. It is found that the Sutterby fluid model shows shear thickening and shear thinning behaviors. The momentum profile shows that the magnitude of velocity for the shear thickening case is dominant as compared with the shear thinning case. It is also demonstrated that the Sutterby fluid model reduces to a Newtonian model by fixing the fluid parameter to zero. In view of the limiting case, it is established that the surface drag in the case of the Sutterby model shows a trifling pattern as compared with the classical case. 展开更多
关键词 Sutterby FLUID thermal and momentum slip shooting method ohmic dissipation Darcy-Forchheimer law CASH and CARP method
下载PDF
A Slip-Line Method for Calculating Extrusion Force of Steel Helmet with Cold Extrusion Moulding 被引量:2
6
作者 Guo Jinji Zhao Sheng +1 位作者 Xing Haoxu(Department of Applied Mechanics and Engineering, Zhongshan University,Guangzhou 510275, P. R. China)Guan Guifen Liu Zhijian(The Iron Steel Research institute of Guangdong,Guangzhou 510275, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第2期75-81,共7页
This paper presents the elastic and plastic deformation of the steel helmet with coldextrusion moulding. The plastic streamline of the plastic mould-making process for ellipse thinplate is described. The distribution ... This paper presents the elastic and plastic deformation of the steel helmet with coldextrusion moulding. The plastic streamline of the plastic mould-making process for ellipse thinplate is described. The distribution of slip-line is established based on the plastic streamline. Theextrusion force of plastic moulding of the steel helmet is calculated by using of slip-line method.Furthermore, an applied example is given. 展开更多
关键词 Steel helmet Cold extrusion Plastic streamline slip-line method Extrusion force.
下载PDF
SLIP LINE METHOD FOR SINTERED POWDER MATERIALS UNDER CONDITION OF AXIAL SYMMETRY DEFORMATION
7
作者 Zhao, Zhongzhi Hua, Lin Wuhan Institute of Technology, Wuhan 430070, China 《中国有色金属学会会刊:英文版》 CSCD 1993年第3期81-87,共7页
Slip line method for sintered powder materials under condition of axial symmetry is proposed based on the simplified yield condition of sintered powder materials and Haar-von Karman perfect plastic criterion. The equa... Slip line method for sintered powder materials under condition of axial symmetry is proposed based on the simplified yield condition of sintered powder materials and Haar-von Karman perfect plastic criterion. The equations of slip line and stress along slip line are derived, and numerical solutions are given. Deformation load in closed die upsetting of sintered copper cylinder is calculated by slip line method, and theoretical solutions are compared with experimental results. 展开更多
关键词 sintered POWDER material AXIAL SYMMETRY DEFORMATION slip line method
下载PDF
Integral Transform Method for a Porous Slider with Magnetic Field and Velocity Slip
8
作者 Naeem Faraz Yasir Khan +1 位作者 Amna Anjum Anwar Hussain 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1099-1118,共20页
Current research is about the injection of a viscous fluid in the presence of a transverse uniform magnetic field to reduce the sliding drag.There is a slip-on both the slider and the ground in the two cases,for examp... Current research is about the injection of a viscous fluid in the presence of a transverse uniform magnetic field to reduce the sliding drag.There is a slip-on both the slider and the ground in the two cases,for example,a long porous slider and a circular porous slider.By utilizing similarity transformation Navier-Stokes equations are converted into coupled equations which are tackled by Integral Transform Method.Solutions are obtained for different values of Reynolds numbers,velocity slip,and magnetic field.We found that surface slip and Reynolds number has a substantial influence on the lift and drag of long and circular sliders,whereas the magnetic effect is also noticeable. 展开更多
关键词 Porous slider MHD flow Reynolds number velocity slip integral transform method.
下载PDF
Finite element method for coupled diffusion-deformation theory in polymeric gel based on slip-link model
9
作者 Hengdi SU Huixian YAN Bo JIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第4期581-596,共16页
A polymeric gel is an aggregate of polymers and solvent molecules, which can retain its shape after a large deformation. The deformation behavior of polymeric gels was often described based on the Flory-Rehner free en... A polymeric gel is an aggregate of polymers and solvent molecules, which can retain its shape after a large deformation. The deformation behavior of polymeric gels was often described based on the Flory-Rehner free energy function without considering the influence of chain entanglements on the mechanical behavior of gels. In this paper,a new hybrid free energy function for gels is formulated by combining the EdwardsVilgis slip-link model and the Flory-Huggins mixing model to quantify the time-dependent concurrent process of large deformation and mass transport. The finite element method is developed to analyze examples of swelling-induced deformation. Simulation results are compared with available experimental data and show good agreement. The influence of entanglements on the time-dependent deformation behavior of gels is also demonstrated.The study of large deformation kinetics of polymeric gel is useful for diverse applications. 展开更多
关键词 polymeric gel finite element method slip-link model large deformation mass transport kinetics
下载PDF
Interseismic slip distribution and locking characteristics of the mid-southern segment of the Tanlu fault zone
10
作者 Shuyuan Yu Layue Li +1 位作者 Jiaji Luo Yuanyuan Yang 《Earthquake Research Advances》 CSCD 2024年第3期16-26,共11页
We employ the block negative dislocation model to invert the distribution of fault coupling and slip rate deficit on the different segments of the Tanlu(Tancheng-Lujiang) fault zone, according to the GPS horizontal ve... We employ the block negative dislocation model to invert the distribution of fault coupling and slip rate deficit on the different segments of the Tanlu(Tancheng-Lujiang) fault zone, according to the GPS horizontal velocity field from 1991 to 2007(the first phase) and 2013 to 2018(the second phase). By comparing the deformation characteristics results, we discuss the relationship between the deformation characteristics with the M earthquake in Japan. The results showed that the fault coupling rate of the northern section of Tancheng in the second phase reduced compared with that in the first phase. However, the results of the two phases showed that the northern section of Juxian still has a high coupling rate, a deep blocking depth, and a dextral compressive deficit, which is the enrapture section of the 1668 Tancheng earthquake. At the same time, the area strain results show that the strain rate of the central and eastern regions of the second phase is obviously enhanced compared with that of the first phase. The occurrence of the great earthquake in Japan has played a specific role in alleviating the strain accumulation in the middle and south sections of the Tanlu fault zone. The results of the maximum shear strain show that the shear strain in the middle section of the Tanlu fault zone in the second phase is weaker than that in the first phase, and the maximum shear strain in the southern section is stronger than that in the first phase. The fault coupling coefficient of the south Sihong to Jiashan section is high, and it is also the unruptured section of historical earthquakes. At the same time, small earthquakes in this area are not active and accumulate stress easily, so the future earthquake risk deserves attention. 展开更多
关键词 Tanlu fault Middle-southern segment GPS velocity field Inter-seismic slip Fault couping Steepest descent method
下载PDF
A New Approach to the Determination of the Critical Slip Surfaces of Slopes 被引量:6
11
作者 李亮 郑榕明 褚雪松 《China Ocean Engineering》 SCIE EI CSCD 2013年第1期51-64,共14页
A new method for the determination of the critical slip surfaces of slopes is proposed in this paper. In this paper, the original critical slip field method is extended in terms of the total residual moment, values of... A new method for the determination of the critical slip surfaces of slopes is proposed in this paper. In this paper, the original critical slip field method is extended in terms of the total residual moment, values of residual work as well as the unbalanced thrust force at the exit point for a given non-circular slip surface. The most critical slip surface with the maximum representative value for a prescribed factor of safety will be optimized and located using the harmony search algorithm. The prescribed factor of safety is modified with certain tiny interval in order to find the critical slip surface where the maximum representative value is zero. The aforementioned approach to the location of the critical slip surface is greatly different from the traditional limit equilibrium procedure. Three typical soil slopes are evaluated by use of the proposed method, and the comparisons with the classical approaches have illustrated the applicability of the proposed method. 展开更多
关键词 slope stability analysis limit equilibrium method critical slip field method factor of safety
下载PDF
ON SOLUTION TO THE NAVIER-STOKES EQUATIONS WITH NAVIER SLIP BOUNDARY CONDITION FOR THREE DIMENSIONAL INCOMPRESSIBLE FLUID 被引量:3
12
作者 Subha PAL Rajib HALOI 《Acta Mathematica Scientia》 SCIE CSCD 2019年第6期1628-1638,共11页
In this article, we prove the existence and uniqueness of solutions of the NavierStokes equations with Navier slip boundary condition for incompressible fluid in a bounded domain of R^3. The results are established by... In this article, we prove the existence and uniqueness of solutions of the NavierStokes equations with Navier slip boundary condition for incompressible fluid in a bounded domain of R^3. The results are established by the Galerkin approximation method and improved the existing results. 展开更多
关键词 NAVIER-STOKES equations GALERKIN method NAVIER slip boundary condition strain TENSOR
下载PDF
Slip flow of Maxwell viscoelasticity-based micropolar nanoparticles with porous medium: a numerical study 被引量:3
13
作者 H. WAQAS M. IMRAN +2 位作者 S. U. KHAN S. A. SHEHZAD M. A. MERAJ 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第9期1255-1268,共14页
This article presents the mass and heat transport aspects in viscoelastic nanofluid flows under the presence of velocity slip conditions. To explore the nonNewtonian behavior, a Maxwell viscoelasticity-based micropola... This article presents the mass and heat transport aspects in viscoelastic nanofluid flows under the presence of velocity slip conditions. To explore the nonNewtonian behavior, a Maxwell viscoelasticity-based micropolar is considered. Moreover, a porous medium saturates the stretching sheet. A set of similarity variables is introduced to derive the dimensionless ordinary differential equations of velocity, concentration, and temperature profiles. The numerical solution is computed by using the MATLAB bvp4c package. The salient flow features of velocity, concentration, and temperature profiles are described and discussed through various graphs. It is observed that with an increase in the slip parameter, the micro-rotation velocity also increases. The temperature of nanoparticles gets maximum values by varying the viscoelastic parameter and the porosity parameter while an opposite trend is noted for the micro-rotation parameter. The local Nusselt number and the local Sherwood number increase by increasing the viscoelastic parameter, the porosity parameter, and the slip velocity parameter. The graphical computation is performed for a specified range of parameters, such as 0 ≤ M ≤ 2.5, 0 ≤σm ≤ 2.5, 0 ≤ K1 ≤ 1.5, 0.5 ≤ Pr ≤ 3.0, 0 ≤σ≤ 1.5, 0.5 ≤ Sc ≤ 2.0, 0.2 ≤ Nb ≤ 0.8, and 0.2 ≤ Nt ≤ 0.8. 展开更多
关键词 viscoelasticity-based MICROPOLAR nanofluid porous medium slip effect numerical method
下载PDF
Imperialistic Competitive Algorithm:A metaheuristic algorithm for locating the critical slip surface in 2-Dimensional soil slopes 被引量:5
14
作者 Ali Reza Kashani Amir Hossein Gandomi Mehdi Mousavi 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期83-89,共7页
In this study, Imperialistic Competitive Algorithm(ICA) is utilized for locating the critical failure surface and computing the factor of safety(FOS) in a slope stability analysis based on the limit equilibrium ap... In this study, Imperialistic Competitive Algorithm(ICA) is utilized for locating the critical failure surface and computing the factor of safety(FOS) in a slope stability analysis based on the limit equilibrium approach. The factor of safety relating to each trial slip surface is calculated using a simplified algorithm of the Morgenstern-Price method, which satisfies both the force and the moment equilibriums. General slip surface is considered non-circular in this study that is constituted by linking random straight lines.To explore the performance of the proposed algorithm, four benchmark test problems are analyzed. The results demonstrate that the present techniques can provide reliable, accurate and efficient solutions for locating the critical failure surface and relating FOS. Moreover, in contrast with previous studies the present algorithm could reach the lower value of FOS and reached more exact solutions. 展开更多
关键词 Meta-heuristic algorithms Morgen-stern and price method Non-circular slip surface Imperialistic competitive algorithm
下载PDF
A Generalized Limit Equilibrium Method for the Solution of Active Earth Pressure on a Retaining Wall 被引量:11
15
作者 OUYANG Chao-jun XU Qiang +2 位作者 HE Si-ming LUO Yu WU Yong 《Journal of Mountain Science》 SCIE CSCD 2013年第6期1018-1027,共10页
In this paper, a generalized limit equilibrium method of solving the active earth pressure problem behind a retaining wall is proposed.Differing from other limit equilibrium methods, an arbitrary slip surface shape wi... In this paper, a generalized limit equilibrium method of solving the active earth pressure problem behind a retaining wall is proposed.Differing from other limit equilibrium methods, an arbitrary slip surface shape without any assumptions of pre-defined shapes is needed in the current framework, which is verified to find the most probable failure slip surface. Based on the current computational framework, numerical comparisons with experiment, discrete element method and other methods are carried out. In addition, the influences of the inclination of the wall, the soil cohesion, the angle of the internal friction of the soil, the slope inclination of the backfill soil on the critical pressure coefficient of the soil, the point of application of the resultant earth pressure and the shape of the slip surface are also carefully investigated. The results demonstrate that limit equilibrium solution from predefined slip plane assumption, including Coulomb solution, is a special case of current computational framework. It is well illustrated that the current method is feasible to evaluate the characteristics of earth pressure problem. 展开更多
关键词 Limit equilibrium method Retainingwall Active earth pressure Critical slip surface
下载PDF
Reliability analysis of slopes considering spatial variability of soil properties based on efficiently identified representative slip surfaces 被引量:16
16
作者 Bin Wang Leilei Liu +1 位作者 Yuehua Li Quan Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期642-655,共14页
Slope reliability analysis considering inherent spatial variability(ISV)of soil properties is timeconsuming when response surface method(RSM)is used,because of the"curse of dimensionality".This paper propose... Slope reliability analysis considering inherent spatial variability(ISV)of soil properties is timeconsuming when response surface method(RSM)is used,because of the"curse of dimensionality".This paper proposes an effective method for identification of representative slip surfaces(RSSs)of slopes with spatially varied soils within the framework of limit equilibrium method(LEM),which utilizes an adaptive K-means clustering approach.Then,an improved slope reliability analysis based on the RSSs and RSM considering soil spatial variability,in perspective of computation efficiency,is established.The detailed implementation procedure of the proposed method is well documented,and the ability of the method in identifying RSSs and estimating reliability is investigated via three slope examples.Results show that the proposed method can automatically identify the RSSs of slope with only one evaluation of the conventional deterministic slope stability model.The RSSs are invariant with the statistics of soil properties,which allows parametric studies that are often required in slope reliability analysis to be efficiently achieved with ease.It is also found that the proposed method provides comparable values of factor of safety(FS)and probability of failure(Pf)of slopes with those obtained from direct analysis and lite rature. 展开更多
关键词 Slope reliability analysis Spatial variability Representative slip surfaces(RSSs) Response surface method(RSM) Random field simulation
下载PDF
Effects of slip, viscous dissipation and Joule heating on the MHD flow and heat transfer of a second grade fluid past a radially stretching sheet 被引量:2
17
作者 Bikash SAHOO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第2期159-173,共15页
The flow and heat transfer of an electrically conducting non-Newtonian second grade fluid due to a radially stretching surface with partial slip is considered. The partial slip is controlled by a dimensionless slip fa... The flow and heat transfer of an electrically conducting non-Newtonian second grade fluid due to a radially stretching surface with partial slip is considered. The partial slip is controlled by a dimensionless slip factor, which varies between zero (total adhesion) and infinity (full slip). Suitable similarity transformations are used to reduce the resulting highly nonlinear partial differential equations into ordinary differential equations. The issue of paucity of boundary conditions is addressed and an effective numerical scheme is adopted to solve the obtained differential equations even without augmenting any extra boundary conditions. The important findings in this communication are the combined effects of the partial slip, magnetic interaction parameter and the second grade fluid parameter on the velocity and temperature fields. It is interesting to find that the slip increases the momentum and thermal boundary layer thickness. As the slip increases in magnitude, permitting more fluid to slip past the sheet, the skin friction coefficient decreases in magnitude and approaches zero for higher values of the slip parameter, i.e., the fluid behaves as though it were inviscid. The presence of a magnetic field has also substantial effects on velocity and temperature fields. 展开更多
关键词 second grade fluid stretching sheet partial slip heat transfer finitedifference method Broyden's method
下载PDF
Influence of wall slip on the hydrodynamic behavior of a two-dimensional slider bearing 被引量:2
18
作者 G. J. Ma C. W. Wu P. Zhou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第6期655-661,共7页
In the present paper, a multi-linearity method is used to address the nonlinear slip control equation for the hydrodynamic analysis of a two-dimensional (2-D) slip gap flow. Numerical analysis of a finite length sli... In the present paper, a multi-linearity method is used to address the nonlinear slip control equation for the hydrodynamic analysis of a two-dimensional (2-D) slip gap flow. Numerical analysis of a finite length slider bearing with wall slip shows that the surface limiting shear stress exerts complicated influences on the hydrodynamic behavior of the gap flow. If the slip occurs at either the stationary surface or the moving surface (especially at the stationary surface), there is a transition point in the initial limiting shear stress for the proportional coefficient to affect the hydrodynamic load support in two opposite ways: it increases the hydrodynamic load support at higher initial limiting shear stresses, but decreases the hydrodynamic load support at lower initial limiting shear stresses. If the slip occurs at the moving surface only, no fluid pressure is generated in the case of null initial limiting shear stress. If the slip occurs at both the surfaces with the same slip property, the hydrodynamic load support goes off after a critical sliding speed is reached. A small initial limiting shear stress and a small proportionality coefficient always give rise to a low friction drag. 展开更多
关键词 Wall slip Slider beating Multi-linearity method Quadratic programming
下载PDF
Heat transfer of nanofluids considering nanoparticle migration and second-order slip velocity 被引量:2
19
作者 Jing ZHU Shengnan WANG +1 位作者 Liancun ZHENG Xinxin ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第1期125-136,共12页
The heat transfer of a magnetohydrodynamics nanofluid inside an annulus considering the second-order slip condition and nanoparticle migration is theoret-ically investigated. A second-order slip condition, which appro... The heat transfer of a magnetohydrodynamics nanofluid inside an annulus considering the second-order slip condition and nanoparticle migration is theoret-ically investigated. A second-order slip condition, which appropriately represents the non-equilibrium region near the interface, is prescribed rather than the no-slip condition and the linear Navier slip condition. To impose different temperature gradients, the outer wall is subjected to q2, the inner wall is subjected to q1, and q1 〉 q2. A modified two-component four-equation non-homogeneous equilibrium model is employed for the nanofiuid, which have been reduced to two-point ordinary boundary value differential equations in the consideration of the thermally and hydrodynamically fully developed flow. The homotopy analysis method (HAM) is employed to solve the equations, and the h-curves are plotted to verify the accuracy and efficiency of the solutions. Moreover, the effects of the physical factors on the flow and heat transfer are discussed in detail, and the semi-analytical relation between NUB and NBT is obtained. 展开更多
关键词 nanofiuid second-order slip nanoparticle migration homotopy analysis method (HAM) semi-analytical relation
下载PDF
Second-order slip MHD flow and heat transfer of nanofluids with thermal radiation and chemical reaction 被引量:2
20
作者 Jing ZHU Liu ZHENG +1 位作者 Liancun ZHENG Xinxin ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第9期1131-1146,共16页
The effects of the second-order velocity slip and temperature jump boundary conditions on the magnetohydrodynamic (MHD) flow and heat transfer in the presence of nanoparticle fractions are investigated. In the model... The effects of the second-order velocity slip and temperature jump boundary conditions on the magnetohydrodynamic (MHD) flow and heat transfer in the presence of nanoparticle fractions are investigated. In the modeling of the water-based nanofluids containing Cu and A1203, the effects of the Brownian motion, thermophoresis, and thermal radiation are considered. The governing boundary layer equations are transformed into a system of nonlinear differential equations, and the analytical approximations of the solutions axe derived by the homotopy analysis method (HAM). The reliability and efficiency of the HAM solutions are verified by the residual errors and the numerical results in the literature. Moreover, the effects of the physical factors on the flow and heat transfer are discussed graphically. 展开更多
关键词 NANOFLUID velocity slip temperature jump homotopy analysis method(HAM) heat and mass transfer magnetohydrodynamic (MHD) flow
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部