he power density of axial piston pumps can greatly benefit from increasing the speed level.However,traditional slippers in axial piston pumps are exposed to continuous sliding on the swash plate,suffering from serious...he power density of axial piston pumps can greatly benefit from increasing the speed level.However,traditional slippers in axial piston pumps are exposed to continuous sliding on the swash plate,suffering from serious wear at high rotational speeds.Therefore,this paper presents a new integrated slipper retainer mechanism for high-speed axial piston pumps,which can avoid direct contact between the slippers and the swash plate and thereby eliminate slipper wear under severe operating conditions.A lubrication model was developed for this specific slipper retainer mechanism,and experiments were carried out on a pump prototype operating at high rotational speed up to 10000 r/min.Experimental results qualitatively validated the theoretical model and confirmed the effectiveness of the new slipper design.展开更多
A novel dynamic model describing the slipper posture of the swash plate in axial piston pumps is proposed, taking into account the hydrodynamic and squeezing effects, which involves three degrees of freedom. The varia...A novel dynamic model describing the slipper posture of the swash plate in axial piston pumps is proposed, taking into account the hydrodynamic and squeezing effects, which involves three degrees of freedom. The variation in the lubricating film thickness and the slipper tilt are accurately calculated. The influence of hydrodynamic effects and charging pressure on the slipper lubrication is discussed. The minimum film thickness, the overturning angle and the azimuth angle are obtained.Then, the trajectory of minimum thickness on the friction surface of the swash plate is predicted, the accuracy of which can be verified with the abrasion distribution of an actual swash plate. Research results can predict the durability and provide theoretical help for the design of the slipper.展开更多
基金This work was supported by the National Key R&D Program of China(Grant No.2019YFB2004504)the National Natural Science Foundation of China(Grant No.52005323)+2 种基金the National Outstanding Youth Science Foundation of China(Grant No.51922093)the China National Postdoctoral Program for Innovative Talents(Grant No.BX20200210)the China Postdoctoral Science Foundation(Grant No.2019M660086).The。
文摘he power density of axial piston pumps can greatly benefit from increasing the speed level.However,traditional slippers in axial piston pumps are exposed to continuous sliding on the swash plate,suffering from serious wear at high rotational speeds.Therefore,this paper presents a new integrated slipper retainer mechanism for high-speed axial piston pumps,which can avoid direct contact between the slippers and the swash plate and thereby eliminate slipper wear under severe operating conditions.A lubrication model was developed for this specific slipper retainer mechanism,and experiments were carried out on a pump prototype operating at high rotational speed up to 10000 r/min.Experimental results qualitatively validated the theoretical model and confirmed the effectiveness of the new slipper design.
基金Supported by the National Ministry Innovation Program of China(VTDP 3103)
文摘A novel dynamic model describing the slipper posture of the swash plate in axial piston pumps is proposed, taking into account the hydrodynamic and squeezing effects, which involves three degrees of freedom. The variation in the lubricating film thickness and the slipper tilt are accurately calculated. The influence of hydrodynamic effects and charging pressure on the slipper lubrication is discussed. The minimum film thickness, the overturning angle and the azimuth angle are obtained.Then, the trajectory of minimum thickness on the friction surface of the swash plate is predicted, the accuracy of which can be verified with the abrasion distribution of an actual swash plate. Research results can predict the durability and provide theoretical help for the design of the slipper.