A novel dynamic model describing the slipper posture of the swash plate in axial piston pumps is proposed, taking into account the hydrodynamic and squeezing effects, which involves three degrees of freedom. The varia...A novel dynamic model describing the slipper posture of the swash plate in axial piston pumps is proposed, taking into account the hydrodynamic and squeezing effects, which involves three degrees of freedom. The variation in the lubricating film thickness and the slipper tilt are accurately calculated. The influence of hydrodynamic effects and charging pressure on the slipper lubrication is discussed. The minimum film thickness, the overturning angle and the azimuth angle are obtained.Then, the trajectory of minimum thickness on the friction surface of the swash plate is predicted, the accuracy of which can be verified with the abrasion distribution of an actual swash plate. Research results can predict the durability and provide theoretical help for the design of the slipper.展开更多
Well-designed surface textures can improve the tribological properties and the efficiency of the electro-hydrostatic actuator(EHA)pump under high-speed and high-pressure conditions.This study proposes a multi-objectiv...Well-designed surface textures can improve the tribological properties and the efficiency of the electro-hydrostatic actuator(EHA)pump under high-speed and high-pressure conditions.This study proposes a multi-objective optimization model to obtain the arbitrarily surface textures design of the slipper/swash plate interface for improving the mechanical and volumetric efficiency of the EHA pump.The model is composed of the lubrication film model,the component dynamic model considering the spinning motion,and the multi-objective optimization model.In this way,the arbitrary-shaped surface texture with the best comprehensive effect in the EHA pump is achieved and its positive effects in the EHA pump prototype are verified.Experimental results show a reduction in wear and an improvement in mechanical and volumetric efficiency by 1.4%and 0.8%,respectively,with the textured swash plate compared with the untextured one.展开更多
基金Supported by the National Ministry Innovation Program of China(VTDP 3103)
文摘A novel dynamic model describing the slipper posture of the swash plate in axial piston pumps is proposed, taking into account the hydrodynamic and squeezing effects, which involves three degrees of freedom. The variation in the lubricating film thickness and the slipper tilt are accurately calculated. The influence of hydrodynamic effects and charging pressure on the slipper lubrication is discussed. The minimum film thickness, the overturning angle and the azimuth angle are obtained.Then, the trajectory of minimum thickness on the friction surface of the swash plate is predicted, the accuracy of which can be verified with the abrasion distribution of an actual swash plate. Research results can predict the durability and provide theoretical help for the design of the slipper.
基金supported by the National Key R&D Program of China(Grant No.2018YFB2001101)the National Outstanding Youth Science Foundation of China(Grant No.51922093)+2 种基金the National Science Foundation for Young Scientists of China(Grant No.51905473)the Major Science and Technology Projects in Ningbo,China(Grant No.2019B10054)the Open Foundation of the State Key Laboratory of Mechanical Transmissions,China(Grant No.SKLMT-ZDKFKT-202001)。
文摘Well-designed surface textures can improve the tribological properties and the efficiency of the electro-hydrostatic actuator(EHA)pump under high-speed and high-pressure conditions.This study proposes a multi-objective optimization model to obtain the arbitrarily surface textures design of the slipper/swash plate interface for improving the mechanical and volumetric efficiency of the EHA pump.The model is composed of the lubrication film model,the component dynamic model considering the spinning motion,and the multi-objective optimization model.In this way,the arbitrary-shaped surface texture with the best comprehensive effect in the EHA pump is achieved and its positive effects in the EHA pump prototype are verified.Experimental results show a reduction in wear and an improvement in mechanical and volumetric efficiency by 1.4%and 0.8%,respectively,with the textured swash plate compared with the untextured one.