The radiative properties(absorptance, reflectance, and transmittance) of deep slits with five nanoscale slit profile variations at the transverse magnetic wave incidence were numerically investigated by employing the ...The radiative properties(absorptance, reflectance, and transmittance) of deep slits with five nanoscale slit profile variations at the transverse magnetic wave incidence were numerically investigated by employing the finite difference time domain method. For slits with attached features, their radiative properties can be much different due to the modified cavity geometry and dangled structures, even at wavelengths between 3 and 15 μm. The shifts of cavity resonance excitation result in higher transmittance through narrower slits at specific wavelengths and resonance modes are confirmed with the electromagnetic fields. Opposite roles possibly played by features in increasing or decreasing absorptance are determined by the feature position and demonstrated by Poynting vectors. Correlations among all properties of a representative slit array and the slit density are also comprehensively studied. When multiple slit types coexist in an array(complex slits), a wide-band transmittance or absorptance enhancement is feasible by merging spectral peaks contributed from each type of slits distinctively. Discrepancy among infrared properties of four selected slit combinations is explained while effects of slit density are also discussed.展开更多
We investigate the effects of a bar on optical transmission through Z-shaped metallic slit arrays by using the finite- difference time domain (FDTD) method. A new hybrid Fabry-Perot (FP) surface plasmon polariton ...We investigate the effects of a bar on optical transmission through Z-shaped metallic slit arrays by using the finite- difference time domain (FDTD) method. A new hybrid Fabry-Perot (FP) surface plasmon polariton (SPP) mode emerges when changing the geometric parameters of the bar, and this mode can be viewed as a coupling between FP mode and SPP mode. In addition, an obvious dip appears in a featured area when the bar deviates from the central line, and a small displacement of the bar leads to tremendous change of the dip. These behaviors can be attributed to the phase resonance. In short, the structure is very sensitive to the metal bar. Furthermore, it combines photonic device miniaturization with sensitivity, which is useful for making optical switches.展开更多
基金Project(N130402006)supported by Fundamental Research Funds for the Central Universities,ChinaProject(51476024)supported by the National Natural Science Foundation of China
文摘The radiative properties(absorptance, reflectance, and transmittance) of deep slits with five nanoscale slit profile variations at the transverse magnetic wave incidence were numerically investigated by employing the finite difference time domain method. For slits with attached features, their radiative properties can be much different due to the modified cavity geometry and dangled structures, even at wavelengths between 3 and 15 μm. The shifts of cavity resonance excitation result in higher transmittance through narrower slits at specific wavelengths and resonance modes are confirmed with the electromagnetic fields. Opposite roles possibly played by features in increasing or decreasing absorptance are determined by the feature position and demonstrated by Poynting vectors. Correlations among all properties of a representative slit array and the slit density are also comprehensively studied. When multiple slit types coexist in an array(complex slits), a wide-band transmittance or absorptance enhancement is feasible by merging spectral peaks contributed from each type of slits distinctively. Discrepancy among infrared properties of four selected slit combinations is explained while effects of slit density are also discussed.
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100162110068)the National Natural Science Foundations of China (Grant Nos. 61275174 and 11164007)
文摘We investigate the effects of a bar on optical transmission through Z-shaped metallic slit arrays by using the finite- difference time domain (FDTD) method. A new hybrid Fabry-Perot (FP) surface plasmon polariton (SPP) mode emerges when changing the geometric parameters of the bar, and this mode can be viewed as a coupling between FP mode and SPP mode. In addition, an obvious dip appears in a featured area when the bar deviates from the central line, and a small displacement of the bar leads to tremendous change of the dip. These behaviors can be attributed to the phase resonance. In short, the structure is very sensitive to the metal bar. Furthermore, it combines photonic device miniaturization with sensitivity, which is useful for making optical switches.