Bottom currents at about 1000m depth in and around a submarine valley on the continental slope of the northern South China Sea were studied by a 14-month long experiment from July 2013 to September 2014. The observati...Bottom currents at about 1000m depth in and around a submarine valley on the continental slope of the northern South China Sea were studied by a 14-month long experiment from July 2013 to September 2014. The observations reveal that bottom currents are strongly influenced by the topography, being along valley axis or isobaths. Power density spectrum analysis shows that all the currents have significant peaks at diurnal and semi-diurnal frequencies. Diurnal energy is dominant at the open slope site, which is consistent with many previous studies. However, at the site inside the valley the semi-diurnal energy dominates, although the distance between the two sites of observation is quite small (11 kin) compared to a typical horizontal first-mode internal tide wavelength (200 km). We found this phenomenon is caused by the focusing of internal waves of certain frequencies in the valley. The inertial peak is found only at the open slope site in the first deployment but missing at the inside valley site and the rest of the de- ployments. Monthly averaged residual currents reveal that the near-bottom currents on the slope flow southwestward throughout the year except in August and September, 2013, from which we speculate that this is a result of the interaction between a mesoscale eddy and the canyon/sag topography. Currents inside the valley within about 10mab basically flow along slope and in the layers above the 10mab the currents are northwestward, that is, from the deep ocean to the shelf. The monthly mean current vectors manifest an Ek- man layer-like vertical structure at both sites, which rotate counter-clockwise looking from above.展开更多
While the Antarctic Slope Current(ASC) has been intensively studied for the East Antarctica slope area and the Weddell Sea, its fate in the western Antarctic Peninsula(WAP) region remains much less known. Data from tw...While the Antarctic Slope Current(ASC) has been intensively studied for the East Antarctica slope area and the Weddell Sea, its fate in the western Antarctic Peninsula(WAP) region remains much less known. Data from two cruises conducted near the South Shetland Islands(SSIs) and the Elephant Island(EI), one in austral summer of 2004 and one in austral winter of 2006, were analyzed to provide a broad picture of the circulation pattern over the continental slope of the surveyed area, and an insight into the dynamical balance of the circulation. The results indicate that southwestward currents are present over the upper slope in the study area, indicating the ASC in the WAP region. Near the Shackleton Gap(SG) north of the EI, the southwestward slope currents near the shelf break are characterized by a water mass colder and fresher than the ambient water, which produces cross-slope density gradients and then vertical shear of the along-slope(or along-isobath) velocity. The vertical shear is associated with a reversal of the along-slope current from northeastward at surface to southwestward in deeper layers, or a depth-intensification of the southwestward slope currents. The water mass with temperature and salinity characteristics similar to the observed cold and fresh water is also revealed on the southern slope of the Scotia Sea, suggesting that this cold and fresh water is originated from the Scotia Sea slope and flows southwestward through the SG. Over the shelf north of the SSIs, the cold and fresh water mass is also observed and originates mainly from the Bransfield Strait. In this area, vertical structure of the southwestward slope currents is associated with the onshore intrusion of the upper Circumpolar Deep Water that creates cross-slope density gradients.展开更多
The wave relative frequency in the coordinate system moving with current and the angle between the direction ofwave propagation and that of current are computed based on the wave dispersion relation. The current field...The wave relative frequency in the coordinate system moving with current and the angle between the direction ofwave propagation and that of current are computed based on the wave dispersion relation. The current field iscomputed by solving the depth averaged shallow water equations. The wave field is computed by solving the mild-slope equation which has taken the currents effect into account. A numerical model is established using a finiteelement method for simulating the wave shoaling and diffraction in current over a mild-slope, and the numericalresults are reasonable to compare with the experimental data.展开更多
Researches on breaking-induced currents by waves are summarized firstly in this paper. Then, a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with...Researches on breaking-induced currents by waves are summarized firstly in this paper. Then, a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with curved boundary or irregular coastline. The proposed wave-induced current model includes a nearshore current module established through orthogonal curvilinear transformation form of shallow water equations and a wave module based on the curvilinear parabolic approximation wave equation. The wave module actually serves as the driving force to provide the current module with required radiation stresses. The Crank-Nicolson finite difference scheme and the alternating directions implicit method are used to solve the wave and current module, respectively. The established surf zone currents model is validated by two numerical experiments about longshore currents and rip currents in basins with rip channel and breakwater. The numerical results are compared with the measured data and published numerical results.展开更多
A time-dependent mild-slope equation for the extension of the classic mild-slope equation of Berkhoff is developed for the interactions of large ambient currents and waves propagating over an uneven bottom, using a Ha...A time-dependent mild-slope equation for the extension of the classic mild-slope equation of Berkhoff is developed for the interactions of large ambient currents and waves propagating over an uneven bottom, using a Hamiltonian formulation for irrotational motions. The bottom topography consists of two components the slowly varying component which satisfies the mild-slope approximation, and the fast varying component with wavelengths on the order of the surface wavelength but amplitudes which scale as a small parameter describing the mild-slope condition. The theory is more widely applicable and contains as special cases the following famous mild-slope type equations: the classical mild-Slope equation, Kirby's extended mild-slope equation with current, and Dingemans's mild-slope equation for rippled bed. Finally, good agreement between the classic experimental data concerning Bragg reflection and the present numerical results is observed.展开更多
Based on the monthly mean sea level data obtained from 3 years’ (1999— 2001) tide-gauge measurements, the annual variability of the sea level near Qingdao and Jiaozhou Bay is studied and discussed in this paper. Res...Based on the monthly mean sea level data obtained from 3 years’ (1999— 2001) tide-gauge measurements, the annual variability of the sea level near Qingdao and Jiaozhou Bay is studied and discussed in this paper. Results show that the sea surface height at all the tide gauges becomes higher in summer than that in winter, with an obvious seasonal variability. Furthermore the sea surface height measured at a short distance outside the bay is lower than that in the bay, showing a sea surface slope downward from north to south. The reasons for the formation of the slope are explained as well. The dynamic action of the summer monsoon and the sea surface slope, and their effects on the monthly mean current are studied by means of dynamics principles. The importance of the summer monsoon and the pressure gradient generated by the sea surface slope, with their effects on the alongshore current, is pointed out and emphasized in this paper.展开更多
Based on the analysis of the basic principle of slope compensation, a high-precision adaptive slope compensation circuit for peak current mode boost DC/DC converter is designed. The circuit dynamically detects the inp...Based on the analysis of the basic principle of slope compensation, a high-precision adaptive slope compensation circuit for peak current mode boost DC/DC converter is designed. The circuit dynamically detects the input and output voltage of the boost circuit to realize automatic adjustment of the compensation amount with the change of duty ratio, which makes the ramp compensation slope optimized. The design uses a high-precision subtracter to improve the accuracy of slope compensation. While eliminating sub-slope oscillation and improving the stability of boost circuit, the negative impact of compensation on boost circuit is minimized, and the load capacity and transient response speed of boost circuit are guaranteed. The circuit is designed based on SMIC 0.18um CMOS technology, with simple structure, high reliability and easy engineering implementation. Spectre circuit simulator 17.1.0.124 64b simulation results show that the circuit has high compensation accuracy and wide input and output voltage range. When the working voltage is 3.3 V, the compensation slope can be adjusted adaptively under different duty cycles, and the minimum error between the compensation slope and the theoretical optimal compensation slope is only 0.42%.展开更多
During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which...During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which was initially deployed in the Chukchi Sea.The buoy traversed the Chukchi Sea,Chukchi Abyssal Plain,Mendeleev Ridge,Makarov Basin,and Canada Basin over a period of 632 d.After returning to the Mendeleev Ridge,it continued to drift toward the pole.Overall,the track of the buoy reflected the characteristics of the transpolar drift and Chukchi Slope Current,as well as the inertial flow,cross-ridge surface flow,and even the surface disorganized flow for some time intervals.The results showed that:(1)the transpolar drift mainly occurs in the Chukchi Abyssal Plain,Mendeleev Ridge,and western Canada Basin to the east of the ridge where sea ice concentration is high,and the average northward flow velocity in the region between 79.41°N and 86.32°N was 5.1 cm/s;(2)the average surface velocity of the Chukchi Slope Current was 13.5 cm/s,and while this current moves westward along the continental slope,it also extends northwestward across the continental slope and flows to the deep sea;and(3)when sea ice concentration was less than 50%,the inertial flow was more significant(the maximum observed inertial flow was 26 cm/s,and the radius of the inertia circle was 3.6 km).展开更多
A new numerical finite difference iteration method for refraction-diffraction of waves ia water of slowly varying current and topography is developed in this paper. And corresponding theoretical model including the di...A new numerical finite difference iteration method for refraction-diffraction of waves ia water of slowly varying current and topography is developed in this paper. And corresponding theoretical model including the dissipation term is briefly described, together with some analysis and comparison of computational results of the model with measurements in a hydraulic scale model (Berkhoff et al., 1982). An example of practical use of the method is given, showing that the present model is useful to engineering practice.展开更多
Abstract Episodic carbonate deposits on the Triassic continental slope in southern China are mainly composed of gravity-flow limestones and contourite limestones. Gravity-flow limestones were well developed in the low...Abstract Episodic carbonate deposits on the Triassic continental slope in southern China are mainly composed of gravity-flow limestones and contourite limestones. Gravity-flow limestones were well developed in the lower and middle Yangtze area in the Early Triassic and in the Yunnan-Guizhou-Guangxi area in the Early and Middle Triassic. Five fundamental types of gravity-flow limestones are recognized: slide limestone, debris-flow limestone, grain-flow limestone, turbidite limestone and rockfall limestone. They form six types of assemblage beds: slide-debris-flow limestones, slide-debris-flow-turbidite limestone, slide-debris-flow-grain-flow-turbidite limestone, rockfall-debris-flow limestone, debris-flow-turbidite limestone, and debris-flow-grain-flow-turbidite limestone. The first two were formed mainly in the Early Triassic slopes. The Middle Triassic slopes were characterized by widespread rockfall limestone. Growth faults, storms, earthquakes and oversteepened slopes are considered to be the probable triggers of the gravity flows.展开更多
Water waves, wave-induced long-shore currents and movement of pollutants in waves and currents have been numerically studied based on the hyperbolic mild-slope equation, the shallow water equation , as well as the pol...Water waves, wave-induced long-shore currents and movement of pollutants in waves and currents have been numerically studied based on the hyperbolic mild-slope equation, the shallow water equation , as well as the pollutant movement equation, and the numerical results have also been validated by experimental data. It is shown that the long-shore current velocity and wave set-up increase with the increasing incident wave amplitude and slope steepness of the shore plane ; the wave set-up increases with the in- creasing incident wave period;and the pollutant morement proceeds more quiekly with the increasing incident wave amplitude and slope steepness of the shore palane. In surf zones, the long-shore currents induced by the inclined incident waves have effectively affected the pollutant movement.展开更多
This paper reports study focusing on the effects of sloping bottom on the deep cross-equatorial boundary current, and discusses model and laboratory experiment results showing that the southward that the southward int...This paper reports study focusing on the effects of sloping bottom on the deep cross-equatorial boundary current, and discusses model and laboratory experiment results showing that the southward that the southward intrusion distance and flow speed of the western boundary current depend on the bottom slope variation rate,the difference between and and are the current thickness at eastward edge and westward edge, respectively), and the net mass transport.展开更多
The upper ocean currents in the Pacific Ocean are calculated by using an ocean model with higher horizontal resolution. The large current systems in the Pacific Ocean, such as Kuroshio, Oyashio, NEC, SEC, NECC,Califom...The upper ocean currents in the Pacific Ocean are calculated by using an ocean model with higher horizontal resolution. The large current systems in the Pacific Ocean, such as Kuroshio, Oyashio, NEC, SEC, NECC,Califomia Current and East Australia Current, are well simulated. This paper only gives the numerical simulation results of the upper ocean currents of the representative months in four seasons in the South China Sea (SCS). It showsthat the SCS branch of Kuroshio is the most important current in the northem SCS and it is not only the water resourceof the SCS warm current but also a significant part of the overall SCS circulation. There is a relatively strong northeastward flow entering the SCS through the Taiwan Strait throughout the year except for specific months. Some of thenumerical results have been confirmed by the observational evidences.展开更多
In this paper, the water waves and wave-induced longshore currents in Obak6y coastal water which is located at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic ...In this paper, the water waves and wave-induced longshore currents in Obak6y coastal water which is located at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical results. The numerical results show that the movement of the longshore currents was different while the wave proDaRated to a coastal zone from different directions.展开更多
The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the ...The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the dependence on the external components and device variation and make smooth transition between hysteresis control loop and pulse width modulation(PWM)control loop.The small signal model was deduced for the buck and boost operation mode.The inductor current slope control(ICSC)was proposed to implement the automatic mode transition between buck and boost mode in one switching cycle.The results show that the converter prototype has good dynamic response capability,achieving 94%efficiency and 95%peak efficiency at full 10 A load current.展开更多
A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effe...A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effect in the current loop gain, and it affects dynamic bandwidth and stability of the inner current loop. By selecting the appropriate stability parameter which determines the additional pole and describes the degree of peaking in closed loop transfer function, a control model of current programmed full bridge arc welding inverter with maximum frequency bandwidth and stability can be obtained. Small and large amplitude pulse current outputs are employed in simulations and experiments and results validate the design method.展开更多
The Hamiltonian formalism for surface waves and the mild-slope approximation were empolyed in handling the case of slowly varying three-dimensional currents and an uneven bottom, thus leading to an extended mild-slope...The Hamiltonian formalism for surface waves and the mild-slope approximation were empolyed in handling the case of slowly varying three-dimensional currents and an uneven bottom, thus leading to an extended mild-slope equation. The bottom topography consists of two components: the slowly varying component whose horizontal length scale is longer than the surface wave length, and the fast varying component with the amplitude being smaller than that of the surface wave. ne frequency of the fast varying depth component is, however, comparable to that of the surface waves. The extended mild-slope equation is more widely applicable and contains as special cases famous mild-slope equations below: the classical mild-slope equation of Berkhoff, Kirby's mild-slope equation with current, and Dingemans's mild-slope equation for rippled bed. The extended shallow water equations for ambient currents and rapidly varying topography are also obtained.展开更多
基金funded by China National Offshore Oil Corporation (CNOOC)sponsored by the National Natural Science Foundation of China (Nos.41406031 and 41376038)NSFC-Shandong Joint Fund for Marine Science Research Centers (No.U1406404)
文摘Bottom currents at about 1000m depth in and around a submarine valley on the continental slope of the northern South China Sea were studied by a 14-month long experiment from July 2013 to September 2014. The observations reveal that bottom currents are strongly influenced by the topography, being along valley axis or isobaths. Power density spectrum analysis shows that all the currents have significant peaks at diurnal and semi-diurnal frequencies. Diurnal energy is dominant at the open slope site, which is consistent with many previous studies. However, at the site inside the valley the semi-diurnal energy dominates, although the distance between the two sites of observation is quite small (11 kin) compared to a typical horizontal first-mode internal tide wavelength (200 km). We found this phenomenon is caused by the focusing of internal waves of certain frequencies in the valley. The inertial peak is found only at the open slope site in the first deployment but missing at the inside valley site and the rest of the de- ployments. Monthly averaged residual currents reveal that the near-bottom currents on the slope flow southwestward throughout the year except in August and September, 2013, from which we speculate that this is a result of the interaction between a mesoscale eddy and the canyon/sag topography. Currents inside the valley within about 10mab basically flow along slope and in the layers above the 10mab the currents are northwestward, that is, from the deep ocean to the shelf. The monthly mean current vectors manifest an Ek- man layer-like vertical structure at both sites, which rotate counter-clockwise looking from above.
基金funded by the National Natural Science Foundation of China (No.41406006)sponsored by Shanghai Sailling Program (No.15FY1406400)
文摘While the Antarctic Slope Current(ASC) has been intensively studied for the East Antarctica slope area and the Weddell Sea, its fate in the western Antarctic Peninsula(WAP) region remains much less known. Data from two cruises conducted near the South Shetland Islands(SSIs) and the Elephant Island(EI), one in austral summer of 2004 and one in austral winter of 2006, were analyzed to provide a broad picture of the circulation pattern over the continental slope of the surveyed area, and an insight into the dynamical balance of the circulation. The results indicate that southwestward currents are present over the upper slope in the study area, indicating the ASC in the WAP region. Near the Shackleton Gap(SG) north of the EI, the southwestward slope currents near the shelf break are characterized by a water mass colder and fresher than the ambient water, which produces cross-slope density gradients and then vertical shear of the along-slope(or along-isobath) velocity. The vertical shear is associated with a reversal of the along-slope current from northeastward at surface to southwestward in deeper layers, or a depth-intensification of the southwestward slope currents. The water mass with temperature and salinity characteristics similar to the observed cold and fresh water is also revealed on the southern slope of the Scotia Sea, suggesting that this cold and fresh water is originated from the Scotia Sea slope and flows southwestward through the SG. Over the shelf north of the SSIs, the cold and fresh water mass is also observed and originates mainly from the Bransfield Strait. In this area, vertical structure of the southwestward slope currents is associated with the onshore intrusion of the upper Circumpolar Deep Water that creates cross-slope density gradients.
文摘The wave relative frequency in the coordinate system moving with current and the angle between the direction ofwave propagation and that of current are computed based on the wave dispersion relation. The current field iscomputed by solving the depth averaged shallow water equations. The wave field is computed by solving the mild-slope equation which has taken the currents effect into account. A numerical model is established using a finiteelement method for simulating the wave shoaling and diffraction in current over a mild-slope, and the numericalresults are reasonable to compare with the experimental data.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50839001 and 50979036)
文摘Researches on breaking-induced currents by waves are summarized firstly in this paper. Then, a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with curved boundary or irregular coastline. The proposed wave-induced current model includes a nearshore current module established through orthogonal curvilinear transformation form of shallow water equations and a wave module based on the curvilinear parabolic approximation wave equation. The wave module actually serves as the driving force to provide the current module with required radiation stresses. The Crank-Nicolson finite difference scheme and the alternating directions implicit method are used to solve the wave and current module, respectively. The established surf zone currents model is validated by two numerical experiments about longshore currents and rip currents in basins with rip channel and breakwater. The numerical results are compared with the measured data and published numerical results.
基金This project was supported by the National Outstanding Youth Science Foundation of China under contract! No. 49825161.
文摘A time-dependent mild-slope equation for the extension of the classic mild-slope equation of Berkhoff is developed for the interactions of large ambient currents and waves propagating over an uneven bottom, using a Hamiltonian formulation for irrotational motions. The bottom topography consists of two components the slowly varying component which satisfies the mild-slope approximation, and the fast varying component with wavelengths on the order of the surface wavelength but amplitudes which scale as a small parameter describing the mild-slope condition. The theory is more widely applicable and contains as special cases the following famous mild-slope type equations: the classical mild-Slope equation, Kirby's extended mild-slope equation with current, and Dingemans's mild-slope equation for rippled bed. Finally, good agreement between the classic experimental data concerning Bragg reflection and the present numerical results is observed.
基金The paper is supported by the program: ARGO Observation and Research in the Pacific-India Warm Pool (2002CB714001)the National Key Programme for Developing Basic Sciences of China under the contract No.G1998040900 (Part 1).
文摘Based on the monthly mean sea level data obtained from 3 years’ (1999— 2001) tide-gauge measurements, the annual variability of the sea level near Qingdao and Jiaozhou Bay is studied and discussed in this paper. Results show that the sea surface height at all the tide gauges becomes higher in summer than that in winter, with an obvious seasonal variability. Furthermore the sea surface height measured at a short distance outside the bay is lower than that in the bay, showing a sea surface slope downward from north to south. The reasons for the formation of the slope are explained as well. The dynamic action of the summer monsoon and the sea surface slope, and their effects on the monthly mean current are studied by means of dynamics principles. The importance of the summer monsoon and the pressure gradient generated by the sea surface slope, with their effects on the alongshore current, is pointed out and emphasized in this paper.
文摘Based on the analysis of the basic principle of slope compensation, a high-precision adaptive slope compensation circuit for peak current mode boost DC/DC converter is designed. The circuit dynamically detects the input and output voltage of the boost circuit to realize automatic adjustment of the compensation amount with the change of duty ratio, which makes the ramp compensation slope optimized. The design uses a high-precision subtracter to improve the accuracy of slope compensation. While eliminating sub-slope oscillation and improving the stability of boost circuit, the negative impact of compensation on boost circuit is minimized, and the load capacity and transient response speed of boost circuit are guaranteed. The circuit is designed based on SMIC 0.18um CMOS technology, with simple structure, high reliability and easy engineering implementation. Spectre circuit simulator 17.1.0.124 64b simulation results show that the circuit has high compensation accuracy and wide input and output voltage range. When the working voltage is 3.3 V, the compensation slope can be adjusted adaptively under different duty cycles, and the minimum error between the compensation slope and the theoretical optimal compensation slope is only 0.42%.
基金The Fundamental Research Fund Project of the First Institute of OceanographyMinistry of Natural Resources+1 种基金under contract No.GY022Y07the National Natural Science Foundation of China under contract No.42106232。
文摘During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which was initially deployed in the Chukchi Sea.The buoy traversed the Chukchi Sea,Chukchi Abyssal Plain,Mendeleev Ridge,Makarov Basin,and Canada Basin over a period of 632 d.After returning to the Mendeleev Ridge,it continued to drift toward the pole.Overall,the track of the buoy reflected the characteristics of the transpolar drift and Chukchi Slope Current,as well as the inertial flow,cross-ridge surface flow,and even the surface disorganized flow for some time intervals.The results showed that:(1)the transpolar drift mainly occurs in the Chukchi Abyssal Plain,Mendeleev Ridge,and western Canada Basin to the east of the ridge where sea ice concentration is high,and the average northward flow velocity in the region between 79.41°N and 86.32°N was 5.1 cm/s;(2)the average surface velocity of the Chukchi Slope Current was 13.5 cm/s,and while this current moves westward along the continental slope,it also extends northwestward across the continental slope and flows to the deep sea;and(3)when sea ice concentration was less than 50%,the inertial flow was more significant(the maximum observed inertial flow was 26 cm/s,and the radius of the inertia circle was 3.6 km).
基金Science Foundation of National Education Committee of China
文摘A new numerical finite difference iteration method for refraction-diffraction of waves ia water of slowly varying current and topography is developed in this paper. And corresponding theoretical model including the dissipation term is briefly described, together with some analysis and comparison of computational results of the model with measurements in a hydraulic scale model (Berkhoff et al., 1982). An example of practical use of the method is given, showing that the present model is useful to engineering practice.
文摘Abstract Episodic carbonate deposits on the Triassic continental slope in southern China are mainly composed of gravity-flow limestones and contourite limestones. Gravity-flow limestones were well developed in the lower and middle Yangtze area in the Early Triassic and in the Yunnan-Guizhou-Guangxi area in the Early and Middle Triassic. Five fundamental types of gravity-flow limestones are recognized: slide limestone, debris-flow limestone, grain-flow limestone, turbidite limestone and rockfall limestone. They form six types of assemblage beds: slide-debris-flow limestones, slide-debris-flow-turbidite limestone, slide-debris-flow-grain-flow-turbidite limestone, rockfall-debris-flow limestone, debris-flow-turbidite limestone, and debris-flow-grain-flow-turbidite limestone. The first two were formed mainly in the Early Triassic slopes. The Middle Triassic slopes were characterized by widespread rockfall limestone. Growth faults, storms, earthquakes and oversteepened slopes are considered to be the probable triggers of the gravity flows.
基金The National Basic Research ("973") Program of China under contract No.2005CB724202the National Natural Science Foundation of China under contract Nos.50709004 and 50779006.
文摘Water waves, wave-induced long-shore currents and movement of pollutants in waves and currents have been numerically studied based on the hyperbolic mild-slope equation, the shallow water equation , as well as the pollutant movement equation, and the numerical results have also been validated by experimental data. It is shown that the long-shore current velocity and wave set-up increase with the increasing incident wave amplitude and slope steepness of the shore plane ; the wave set-up increases with the in- creasing incident wave period;and the pollutant morement proceeds more quiekly with the increasing incident wave amplitude and slope steepness of the shore palane. In surf zones, the long-shore currents induced by the inclined incident waves have effectively affected the pollutant movement.
文摘This paper reports study focusing on the effects of sloping bottom on the deep cross-equatorial boundary current, and discusses model and laboratory experiment results showing that the southward that the southward intrusion distance and flow speed of the western boundary current depend on the bottom slope variation rate,the difference between and and are the current thickness at eastward edge and westward edge, respectively), and the net mass transport.
文摘The upper ocean currents in the Pacific Ocean are calculated by using an ocean model with higher horizontal resolution. The large current systems in the Pacific Ocean, such as Kuroshio, Oyashio, NEC, SEC, NECC,Califomia Current and East Australia Current, are well simulated. This paper only gives the numerical simulation results of the upper ocean currents of the representative months in four seasons in the South China Sea (SCS). It showsthat the SCS branch of Kuroshio is the most important current in the northem SCS and it is not only the water resourceof the SCS warm current but also a significant part of the overall SCS circulation. There is a relatively strong northeastward flow entering the SCS through the Taiwan Strait throughout the year except for specific months. Some of thenumerical results have been confirmed by the observational evidences.
基金The National Basic Research Program of China under contract No.2013CB430403the National Natural Science Foundation of China under contract No.51179025+1 种基金the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering under contract No.2013491511the Open Foundation of State Key Laboratory of Ocean Engineering under contract No.1305
文摘In this paper, the water waves and wave-induced longshore currents in Obak6y coastal water which is located at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical results. The numerical results show that the movement of the longshore currents was different while the wave proDaRated to a coastal zone from different directions.
文摘The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the dependence on the external components and device variation and make smooth transition between hysteresis control loop and pulse width modulation(PWM)control loop.The small signal model was deduced for the buck and boost operation mode.The inductor current slope control(ICSC)was proposed to implement the automatic mode transition between buck and boost mode in one switching cycle.The results show that the converter prototype has good dynamic response capability,achieving 94%efficiency and 95%peak efficiency at full 10 A load current.
文摘A small-signal model of current programmed mode pulse width modulation converter including the equivalent sampling effect is introduced and analyzed. In this model, an addition pole is brought out by the sampling effect in the current loop gain, and it affects dynamic bandwidth and stability of the inner current loop. By selecting the appropriate stability parameter which determines the additional pole and describes the degree of peaking in closed loop transfer function, a control model of current programmed full bridge arc welding inverter with maximum frequency bandwidth and stability can be obtained. Small and large amplitude pulse current outputs are employed in simulations and experiments and results validate the design method.
文摘The Hamiltonian formalism for surface waves and the mild-slope approximation were empolyed in handling the case of slowly varying three-dimensional currents and an uneven bottom, thus leading to an extended mild-slope equation. The bottom topography consists of two components: the slowly varying component whose horizontal length scale is longer than the surface wave length, and the fast varying component with the amplitude being smaller than that of the surface wave. ne frequency of the fast varying depth component is, however, comparable to that of the surface waves. The extended mild-slope equation is more widely applicable and contains as special cases famous mild-slope equations below: the classical mild-slope equation of Berkhoff, Kirby's mild-slope equation with current, and Dingemans's mild-slope equation for rippled bed. The extended shallow water equations for ambient currents and rapidly varying topography are also obtained.