The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with the...The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with their influences on geoengineering are complicated or unfortunately are overlooked, we should pay more attentions to internal features of rocks grades IV and V (even in local but mostly controlling zones). With increasing attentions to the characteristics, mechanism and influences of engineering construction-triggered geohazards, it is crucial to fully understand the disturbance of these geohazards on project construction. A reasonable determination method in construction procedure, i.e. the shape of working face, the type of engineering support and the choice of feasible procedure, should be considered in order to mitigate the construction-triggered geohazards. Due to their high sensitivity to groundwater and in-situ stress, various UGBs exhibit hysteretic nature and failure modes. To give a complete understanding on the internal causes, the emphasis on advanced comprehensive geological forecasting and overall reinforcement treatment is therefore of more practical significance. Compre- hensive evaluation of influential factors, identification of UGB, and measures of discontinuity dynamic controlling comprises the geoengineering condition evaluation and dynamic controlling method. In a case of a cut slope, the variations of UGBs and the impacts of key environmental factors are presented, where more severe construction-triggered geohazards emerged in construction stage than those predicted in design and field investigation stages. As a result, the weight ratios of different influential factors with respect to field investigation, design and construction are obtained.展开更多
In this paper,a physical base friction test model of a slope is established.The model is based on similarity principles and the geological conditions of a complicated bridge slope during construction,deformation and f...In this paper,a physical base friction test model of a slope is established.The model is based on similarity principles and the geological conditions of a complicated bridge slope during construction,deformation and failure.The behavior of the slope in both its natural state and during excavation loading is qualitatively analyzed through base friction tests.The base friction test results are then subjected to comparison and analysis using finite element numerical simulation.The findings show that the whole engineered slope tends to stabilize in its natural state,whereas instabilities will arise at faulted rock masses located near bridge piers during excavation loading.Therefore,to ensure normal construction operation of bridge works,it is suggested that pre-reinforcement of faulted rock masses be performed.展开更多
基金support by the National Natural Science Foundation of China (No. 41372324)support from the Chinese Special Funds for Major State Basic Research Project under Grant No. 2010CB732001
文摘The new Austrian tunneling method (NATM) is widely applied in design and construction of underground engineering projects. When the type and distribution of unfavorable geological bodies (UGBs) associated with their influences on geoengineering are complicated or unfortunately are overlooked, we should pay more attentions to internal features of rocks grades IV and V (even in local but mostly controlling zones). With increasing attentions to the characteristics, mechanism and influences of engineering construction-triggered geohazards, it is crucial to fully understand the disturbance of these geohazards on project construction. A reasonable determination method in construction procedure, i.e. the shape of working face, the type of engineering support and the choice of feasible procedure, should be considered in order to mitigate the construction-triggered geohazards. Due to their high sensitivity to groundwater and in-situ stress, various UGBs exhibit hysteretic nature and failure modes. To give a complete understanding on the internal causes, the emphasis on advanced comprehensive geological forecasting and overall reinforcement treatment is therefore of more practical significance. Compre- hensive evaluation of influential factors, identification of UGB, and measures of discontinuity dynamic controlling comprises the geoengineering condition evaluation and dynamic controlling method. In a case of a cut slope, the variations of UGBs and the impacts of key environmental factors are presented, where more severe construction-triggered geohazards emerged in construction stage than those predicted in design and field investigation stages. As a result, the weight ratios of different influential factors with respect to field investigation, design and construction are obtained.
基金The authors gratefully acknowledge the financial support of this work,which was provided by the National Natural Science Foundation of China(Grant Nos.41172260 and 51108393)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110184110018)the National Basic Research Program of China(No.2008CB425801).
文摘In this paper,a physical base friction test model of a slope is established.The model is based on similarity principles and the geological conditions of a complicated bridge slope during construction,deformation and failure.The behavior of the slope in both its natural state and during excavation loading is qualitatively analyzed through base friction tests.The base friction test results are then subjected to comparison and analysis using finite element numerical simulation.The findings show that the whole engineered slope tends to stabilize in its natural state,whereas instabilities will arise at faulted rock masses located near bridge piers during excavation loading.Therefore,to ensure normal construction operation of bridge works,it is suggested that pre-reinforcement of faulted rock masses be performed.