期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Seismic stability of expansive soil slopes reinforced by anchor cables using a modified horizontal slice method
1
作者 Wang Long Chen Guoxing +3 位作者 Hu Wei Zhou Enquan Feng Jianxue Huang Anping 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期377-387,共11页
Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquak... Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa. 展开更多
关键词 limit analysis expansive soil slope matric suction anchor cable pseudo-dynamic analysis
下载PDF
A vector sum analysis method for stability evolution of expansive soil slope considering shear zone damage softening
2
作者 Junbiao Yan Lingwei Kong +1 位作者 Cheng Chen Mingwei Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3746-3759,共14页
Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons... Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior. 展开更多
关键词 Expansive soil slope Stability analysis Ring shear test Vector sum method Damage model Strain softening
下载PDF
Novel protection systems for the improvement in soil and water stability of expansive soil slopes
3
作者 MA Shao-kun HE Ben-fu +3 位作者 MA Min HUANG Zhen CHEN Sheng-jia YUE Huan 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3066-3083,共18页
To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three group... To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects. 展开更多
关键词 Soil and water stability Expansive soil slope Polymer waterproof coating Model test Soil erosion
下载PDF
Field Study of HPTRM Combined with Vegetation and Anchor to Protect Newly Excavated Expansive Soil Slope
4
作者 Yingzi Xu Xuhang Liao +1 位作者 Linqiang Tang Lin Li 《Journal of Earth Science》 SCIE CAS CSCD 2024年第4期1277-1288,共12页
Anchor reinforced vegetation system(ARVS)comprises high performance turf reinforcement mats(HPTRM),vegetation and anchors.It is a new attempt to apply the system in expansive soil slope protection.The goal of this pap... Anchor reinforced vegetation system(ARVS)comprises high performance turf reinforcement mats(HPTRM),vegetation and anchors.It is a new attempt to apply the system in expansive soil slope protection.The goal of this paper was to evaluate the effectiveness of ARVS in protecting newly excavated expansive soil slopes.The field tests on the bare slope,grassed slope and ARVS protective slope were carried out,including natural and artificial rainfall.During the test,the soil water content,soil deformation,and anchor axial force were monitored,and then the slope protection mechanism of ARVS was analyzed.It was found that ARVS can effectively protect expansive soil slopes compared with bare slopes and grassed slopes.The vegetation and HPTRM form a reinforced turf,and the anchors fix it to the slope surface,thus restraining the expansion deformation.The axial force on the anchor of ARVS includes frictional resistance and tensile force transmitted by HPTRM,which is maximum at the early stage of support.The neutral point of the anchor of ARVS moves deeper under atmospheric action,but the vegetation and HPTRM on the slope surface can limit this movement. 展开更多
关键词 expansive soil slope anchor reinforced vegetation system high performance turf reinforcement mats field test slope protection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部