Weather-related geo-hazards are a major concern for both natural slopes and man-made slopes and embankments. Government agencies and private companies are increasingly required to ensure that there is adequate protect...Weather-related geo-hazards are a major concern for both natural slopes and man-made slopes and embankments. Government agencies and private companies are increasingly required to ensure that there is adequate protection of sloping sur- faces in order that interaction with the climate does not produce instability. Superior theoretical formulations and computer tools are now available to address engineering design issues related to the near ground surface soil-atmospheric interactions. An ex- ample is given in this paper that illustrates the consequences of not paying adequate attention to the hazards of slope stability prior to the construction of a highway in South America. On the other hand, examples are given from Hong Kong and China's Mainland where significant benefits are derived from putting in place a hazard slope stability management system. Some results from a hazard management slope stability study related to the railway system in Canada are also reported. The study took advantage of recent research on unsaturated soil behaviour and applied this information to real-time modelling of climatic conditions. The quantification of the water balance at the ground surface, and subsequent infiltration, is used as the primary tool for hazard level assessment. The suggested hazard model can be applied at either specific high risk locations or in a more general, broad-based manner over large areas. A more thorough understanding of unsaturated soil behaviour as it applies to near ground surface soils, along with the numerical computational power of the computer has made it possible for new approaches to be used in slope hazard management engineering.展开更多
In this paper, based on a new Geographic Information System (GIS) grid-based three-dimensional (3D) deterministic model and taken the slope unit as the study object, the landslide hazard is mapped by the index of the ...In this paper, based on a new Geographic Information System (GIS) grid-based three-dimensional (3D) deterministic model and taken the slope unit as the study object, the landslide hazard is mapped by the index of the 3D safety factor. Compared with the one-dimensional (1D) model of infinite slope, which is now widely used for deterministic model based landslide hazard assessment in GIS, the GIS grid-based 3D model is more acceptable and is more adaptable for three-dimensional landslide. Assuming the initial slip as the lower part of an ellipsoid, the 3D critical slip surface in the 3D slope stability analysis is obtained by means of a minimization of the 3D safety factor using the Monte Carlo random simulation. Using a hydraulic model tool for the watershed analysis in GIS, an automatic process has been developed for identifying the slope unit from digital elevation model (DEM) data. Compared with the grid-based landslide hazard mapping method, the slope unit possesses clear topographical meaning, so its results are more credible. All the calculations are implemented by a computational program, 3DSlopeGIS, in which a GIS component is used for fulfilling the GIS spatial analysis function, and all the data for the 3D slope safety factor calculation are in the form of GIS data (the vector and the grid layers). Because of all these merits of the GIS-based 3D landslide hazard mapping method, the complex algorithms and iteration procedures of the 3D problem can also be perfectly implemented.展开更多
Rock slope hazard assessment is an important part of risk analysis for open pit mines.The main parameters that can lead to rock slope failures are the parameters traditionally used in geomechanical classifications,the...Rock slope hazard assessment is an important part of risk analysis for open pit mines.The main parameters that can lead to rock slope failures are the parameters traditionally used in geomechanical classifications,the slope geometrical parameters and external factors like rainfall and blasting.This paper presents a methodology for a hazard assessment system for open pit mine slopes based on 88 cases collated around the world using principal components analysis,discriminant analysis and confidence ellipses.The historical cases used in this study included copper,gold,iron,diamond,lead and zinc,platinum and claystone mines.The variables used in the assessment methodology are uniaxial compressive strength of intact rock;spacing,persistence,opening,roughness,infilling and orientation of the main discontinuity set;weathering of the rock mass;groundwater;blasting method;and height and inclination of the pit.While principal component analysis was used to quantify the data,the discriminant analysis was used to establish a rule to classify new slopes about its stability condition.To provide a practical hazard assessment system,confidence ellipses were used to propose a hazard graph and generate the HAS-Q.The discriminant rule developed in this research has a high discrimination capacity with an error rate of 11.36%.展开更多
This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,wher...This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,where lots of newly established monitoring slopes lack sufficient historical deformation data,making it difficult to extract deformation patterns and provide effective predictions which plays a crucial role in the early warning and forecasting of landslide hazards.A slope displacement prediction method based on transfer learning is therefore proposed.Initially,the method transfers the deformation patterns learned from slopes with relatively rich deformation data by a pre-trained model based on a multi-slope integrated dataset to newly established monitoring slopes with limited or even no useful data,thus enabling rapid and efficient predictions for these slopes.Subsequently,as time goes on and monitoring data accumulates,fine-tuning of the pre-trained model for individual slopes can further improve prediction accuracy,enabling continuous optimization of prediction results.A case study indicates that,after being trained on a multi-slope integrated dataset,the TCN-Transformer model can efficiently serve as a pretrained model for displacement prediction at newly established monitoring slopes.The three-day average RMSE is significantly reduced by 34.6%compared to models trained only on individual slope data,and it also successfully predicts the majority of deformation peaks.The fine-tuned model based on accumulated data on the target newly established monitoring slope further reduced the three-day RMSE by 37.2%,demonstrating a considerable predictive accuracy.In conclusion,taking advantage of transfer learning,the proposed slope displacement prediction method effectively utilizes the available data,which enables the rapid deployment and continual refinement of displacement predictions on newly established monitoring slopes.展开更多
Rockfall is one of severe natural hazards that are frequently reported in northeast region of India. It carries rock block falling from the cliff with high velocities and energies which can result in damages to vehicl...Rockfall is one of severe natural hazards that are frequently reported in northeast region of India. It carries rock block falling from the cliff with high velocities and energies which can result in damages to vehicles, disruption to transportation, injuries and fatalities. The massive rockfall event which occurred in April 2017 on the highway NH-44 A, near Lengpui Airport, blocked the traffic for 1 d, and fortunately,no casualties were reported as the event occurred in the night. This is the only highway connecting the Aizawl city to the airport and the region is highly prone to rockfall events. Hence assessment of rockfall along this highway is necessary. In the current study, rockfall hazard assessment has been carried out on three locations by rockfall hazard rating system(RHRS). During pre-failure analysis, the result shows that most hazardous slopes have RHRS score of 639. The slopes were found to be vulnerable and later on the rockfall activity occurred. Three-dimensional(3 D) stability analysis has been carried out using 3 DEC software package to analyze the failure behavior and to decide the rockfall-prone zone(unstable blocks)for slope. The total displacement of 2.24 cm and velocity of 2,25 mm/s of the failed block have been observed in the numerical analysis. Further, the rockfall vulnerable zone(unstable blocks) is considered to determine the parameters such as run-out distance, bounce height and energies of the falling rock blocks. The maximum total kinetic energy of 5047 kJ has been observed in the numerical analysis with the maximum run-out distance up to 18 m.展开更多
During underground mining,accurate revelation on the deformation and failure mechanisms of a high-steep slope under multi-layer mining conditions facilitates the prevention and control of geological disasters in mines...During underground mining,accurate revelation on the deformation and failure mechanisms of a high-steep slope under multi-layer mining conditions facilitates the prevention and control of geological disasters in mines.Numerical simulation based on discrete element theory can be used to explore the characteristics and mechanism of action of deformation and failure of a slope under complex geological and multi-layer mining conditions.By utilising PFC2 D(particle flow code) software,the deformation and failure characteristics of a high-steep slope in Faer Coal Mine in Guizhou Province,China were investigated.Additionally,the mechanism of influence of different numbers of mining layers on the deformation and failure of the high and steep slope was elucidated.The result showed that after the goaf passed by the slope toe,multi-layer mining aggravated the subsidence and deformation of the slope toe:the slope toppled forward as it sank.The toppling of the slope changed the slope structures:the strata in the front of the slope were transformed from anti-dip to down-dip features.Extruded by collapsedtoppled rock mass,the slope toe and the rock mass located in the lower part of the slope toe generally exhibited a locking effect on the slope.Multi-layer mining degraded the overall stability of the slope,in that the total displacement of the slope was much greater than the total mining thickness of the coal seams.Based on the aforementioned research,ideas for preventing and controlling geological disasters during mining operations under a high-steep slope were proposed.展开更多
This paper presents probabilistic assessment of seismically-induced slope displacements considering uncertainties of seismic ground motions and soil properties.A stochastic ground motion model representing both the te...This paper presents probabilistic assessment of seismically-induced slope displacements considering uncertainties of seismic ground motions and soil properties.A stochastic ground motion model representing both the temporal and spectral non-stationarity of earthquake shakings and a three-dimensional rotational failure mechanism are integrated to assess Newmark-type slope displacements.A new probabilistic approach that incorporates machine learning in metamodeling technique is proposed,by combining relevance vector machine with polynomial chaos expansions(RVM-PCE).Compared with other PCE methods,the proposed RVM-PCE is shown to be more effective in estimating failure probabilities.The sensitivity and relative influence of each random input parameter to the slope displacements are discussed.Finally,the fragility curves for slope displacements are established for sitespecific soil conditions and earthquake hazard levels.The results indicate that the slope displacement is more sensitive to the intensities and strong shaking durations of seismic ground motions than the frequency contents,and a critical Arias intensity that leads to the maximum annual failure probabilities can be identified by the proposed approach.展开更多
Considering the geological hazards attributed to the highway slope,using a common simple model cannot accurately assess the stability of the slope.First,principal component analysis(PCA)was conducted to extract the pr...Considering the geological hazards attributed to the highway slope,using a common simple model cannot accurately assess the stability of the slope.First,principal component analysis(PCA)was conducted to extract the principal components of six factors(namely,bulk density,cohesion,internal friction angle,slope angle,slope height,and pore water pressure ratio)affecting the slope stability.Second,four principal components were adopted as input variables of the support vector machine(SVM)model optimized by genetic algorithm(GA).The output variable was slope stability.Lastly,the assessing model of highway slope stability based on PCA-GA-SVM is established.The maximal absolute error of the model is 0.0921 and the maximal relative error is 9.21%by comparing the assessment value and the practical value of the test sample.The above studies are conducive to enrich the assessing model of highway slope stability and provide some reference for highway slope engineering treatment.展开更多
The hillside and road cuttings of most parts of the north,south and western regions of the Ethiopian Plateau have a record of instability.Landslide-generated problems claimed many lives and property damages in the cou...The hillside and road cuttings of most parts of the north,south and western regions of the Ethiopian Plateau have a record of instability.Landslide-generated problems claimed many lives and property damages in the country.On the road from town Fofa to Gilgel GibeⅡproject instability problem is common.Since the area is extremely rugged,the variation in the elevation is very large and展开更多
The devastating 2004 tsunamis that hit the southwestern coast of Thailand pose a serious threat to people along the coastal zone. A major aim for the tsunami hazard prediction is better prediction of the next tsunamis...The devastating 2004 tsunamis that hit the southwestern coast of Thailand pose a serious threat to people along the coastal zone. A major aim for the tsunami hazard prediction is better prediction of the next tsunamis and their impacts. In this paper, we present the first implications of recent slope failure events of the Andaman outer shelf and upper slope based on a new detailed bathymetric data and subbottom profiler records acquired during two cruises of the MASS project in 2006 and 2007. Morphometric analysis reveals a variety of anomalous features,including: three large plateaus surrounded by moats, ruggedness and unevenness of slope morphology, and two translational submarine landslides. Two submarine landslides are studied from the detailed bathymetric data and subbottom profiler record covering the upper slope of the Andaman Sea shelf break within Thai exclusive economic zone. Maximum approximated volumes of both displaced masses are 4.8×10~7 m~3 and 2.2×10~7 m~3.Considering the data, there is no evidence that landslides have been the sources for tsunami hazard potential in recent geological time. These prerequisites will allow better study of slope failure events in the area. Further investigation is required to better understand obvious geotectonic phenomena.展开更多
Nahaew District in northeastern Thailand, where crops out the Cretaceous Khorat Group, is a priority area for landslide hazard assessment through landslide susceptibility and hazard zoning. Through an interpretation o...Nahaew District in northeastern Thailand, where crops out the Cretaceous Khorat Group, is a priority area for landslide hazard assessment through landslide susceptibility and hazard zoning. Through an interpretation of Google Earth imagery, several landslides were mapped to create landslide inventory map. Parameter maps were constructed and compiled into a database with the landslide inventory. The bivariate (frequency ratio) statistical analysis was used to establish landslide susceptibility maps, which were classified into five susceptibility classes. Another approach was landslide hazard zonation. Urban and rural planning and engineering construction need especially hazard zonation map in medium and local scale. GIS and remote sensing techniques have many advantages in the preparation of the map including regional, medium and local scales. In this study, landslide zonation map was prepared using runout model by assigning engineering properties and Digital Elevation Model (DEM) as well as rainfall data. The result was landslide hazard zonation of the area and can be used for urban planning. The report and recommendation have contributed to local authority.展开更多
This paper presents a comparative visualization strategy of slope failure susceptibility maps for analyzing different types of simultaneous occurrences of slope failures. Through the SEM (structural equation modeling...This paper presents a comparative visualization strategy of slope failure susceptibility maps for analyzing different types of simultaneous occurrences of slope failures. Through the SEM (structural equation modeling), slope failure susceptibility maps are produced by using causal factors (i.e., geographical information, satellite remotely sensed data). As for a conventional pair-wise comparative procedure, the differences between susceptibility maps are delineated on difference maps, that can be, however, applied for evaluating differences only between pairs of susceptibility maps. One of the strong requirements from specialists working on slope stability evaluation is a comparative and visualization strategy of susceptibility maps with respect to "different types of simultaneous slope failures", for which the discussion is insufficient in the previous research activities for constructing the quantitative models for slope failure hazard mapping. As a measure, a color composite map based on susceptibility maps has been produced. The combination of assigning susceptibility maps to RGB-color planes is determined based on an index of "NCCT (normalized correlated color temperature)" which represents the relationship between chromaticity and human visual perception. Through the cases examined, the result indicates that the proposed color composite map, as a heuristic visualization strategy, is useful for simultaneously evaluating the hazardous areas affected by "different types of slope failures".展开更多
There is a great difference between the distribution and evolvement characteristics of slope geological hazard in the same geographical location and climatic conditions,taking the similar structural-genetic connection...There is a great difference between the distribution and evolvement characteristics of slope geological hazard in the same geographical location and climatic conditions,taking the similar structural-genetic connection in Wudongde reservoir area of Jinshajiang River valley for example. In all engineering geological conditions,the chronologic age and attitude of strata,and the lithologic association factors control the distributions and evolvement characteristics of slope geological hazard in the studied area. The study shows that the slopes in geological evolution are in different stages. The conclusion helps to understand the types and the intensity of geological disasters.展开更多
The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the develop...The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the development of four soft computing models:YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJCSA-MLPnet.First of all,the Yeo-Johnson(YJ)transformation technique was used to stabilize the variance of data and make it more suitable for parametric statistical models that assume normality and equal variances.This technique is expected to improve the accuracy of friction angle prediction models.The friction angle prediction models then utilized multi-layer perceptron neural networks(MLPnet)and metaheuristic optimization algorithms to further enhance performance,including flower pollination algorithm(FPA),coral reefs optimization(CRO),ant colony optimization continuous(ACOC),and cuckoo search algorithm(CSA).The prediction models without the YJ technique,i.e.FPA-MLPnet,CRO-MLPnet,ACOC-MLPnet,and CSA-MLPnet,were then compared to those with the YJ technique,i.e.YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJ-CSA-MLPnet.Among these,the YJ-CRO-MLPnet model demonstrated superior reliability,achieving an accuracy of up to 83%in predicting the friction angle of clay in practical engineering scenarios.This improvement is significant,as it represents an increase from 1.3%to approximately 20%compared to the models that did not utilize the YJ transformation technique.展开更多
文摘Weather-related geo-hazards are a major concern for both natural slopes and man-made slopes and embankments. Government agencies and private companies are increasingly required to ensure that there is adequate protection of sloping sur- faces in order that interaction with the climate does not produce instability. Superior theoretical formulations and computer tools are now available to address engineering design issues related to the near ground surface soil-atmospheric interactions. An ex- ample is given in this paper that illustrates the consequences of not paying adequate attention to the hazards of slope stability prior to the construction of a highway in South America. On the other hand, examples are given from Hong Kong and China's Mainland where significant benefits are derived from putting in place a hazard slope stability management system. Some results from a hazard management slope stability study related to the railway system in Canada are also reported. The study took advantage of recent research on unsaturated soil behaviour and applied this information to real-time modelling of climatic conditions. The quantification of the water balance at the ground surface, and subsequent infiltration, is used as the primary tool for hazard level assessment. The suggested hazard model can be applied at either specific high risk locations or in a more general, broad-based manner over large areas. A more thorough understanding of unsaturated soil behaviour as it applies to near ground surface soils, along with the numerical computational power of the computer has made it possible for new approaches to be used in slope hazard management engineering.
基金Under the auspices of Research Institute of Software Engineering(RISE)of Japan(No.01-004).
文摘In this paper, based on a new Geographic Information System (GIS) grid-based three-dimensional (3D) deterministic model and taken the slope unit as the study object, the landslide hazard is mapped by the index of the 3D safety factor. Compared with the one-dimensional (1D) model of infinite slope, which is now widely used for deterministic model based landslide hazard assessment in GIS, the GIS grid-based 3D model is more acceptable and is more adaptable for three-dimensional landslide. Assuming the initial slip as the lower part of an ellipsoid, the 3D critical slip surface in the 3D slope stability analysis is obtained by means of a minimization of the 3D safety factor using the Monte Carlo random simulation. Using a hydraulic model tool for the watershed analysis in GIS, an automatic process has been developed for identifying the slope unit from digital elevation model (DEM) data. Compared with the grid-based landslide hazard mapping method, the slope unit possesses clear topographical meaning, so its results are more credible. All the calculations are implemented by a computational program, 3DSlopeGIS, in which a GIS component is used for fulfilling the GIS spatial analysis function, and all the data for the 3D slope safety factor calculation are in the form of GIS data (the vector and the grid layers). Because of all these merits of the GIS-based 3D landslide hazard mapping method, the complex algorithms and iteration procedures of the 3D problem can also be perfectly implemented.
基金Federal Agency for Support and Evaluation of Graduate Education (CAPES – Brazil, Grant ID 19/2016)Fondation for Research Support of Minas Gerais (FAPEMIG – Brazil)University of New South Wales (UNSW – Australia)
文摘Rock slope hazard assessment is an important part of risk analysis for open pit mines.The main parameters that can lead to rock slope failures are the parameters traditionally used in geomechanical classifications,the slope geometrical parameters and external factors like rainfall and blasting.This paper presents a methodology for a hazard assessment system for open pit mine slopes based on 88 cases collated around the world using principal components analysis,discriminant analysis and confidence ellipses.The historical cases used in this study included copper,gold,iron,diamond,lead and zinc,platinum and claystone mines.The variables used in the assessment methodology are uniaxial compressive strength of intact rock;spacing,persistence,opening,roughness,infilling and orientation of the main discontinuity set;weathering of the rock mass;groundwater;blasting method;and height and inclination of the pit.While principal component analysis was used to quantify the data,the discriminant analysis was used to establish a rule to classify new slopes about its stability condition.To provide a practical hazard assessment system,confidence ellipses were used to propose a hazard graph and generate the HAS-Q.The discriminant rule developed in this research has a high discrimination capacity with an error rate of 11.36%.
基金funded by the project of the China Geological Survey(DD20211364)the Science and Technology Talent Program of Ministry of Natural Resources of China(grant number 121106000000180039–2201)。
文摘This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,where lots of newly established monitoring slopes lack sufficient historical deformation data,making it difficult to extract deformation patterns and provide effective predictions which plays a crucial role in the early warning and forecasting of landslide hazards.A slope displacement prediction method based on transfer learning is therefore proposed.Initially,the method transfers the deformation patterns learned from slopes with relatively rich deformation data by a pre-trained model based on a multi-slope integrated dataset to newly established monitoring slopes with limited or even no useful data,thus enabling rapid and efficient predictions for these slopes.Subsequently,as time goes on and monitoring data accumulates,fine-tuning of the pre-trained model for individual slopes can further improve prediction accuracy,enabling continuous optimization of prediction results.A case study indicates that,after being trained on a multi-slope integrated dataset,the TCN-Transformer model can efficiently serve as a pretrained model for displacement prediction at newly established monitoring slopes.The three-day average RMSE is significantly reduced by 34.6%compared to models trained only on individual slope data,and it also successfully predicts the majority of deformation peaks.The fine-tuned model based on accumulated data on the target newly established monitoring slope further reduced the three-day RMSE by 37.2%,demonstrating a considerable predictive accuracy.In conclusion,taking advantage of transfer learning,the proposed slope displacement prediction method effectively utilizes the available data,which enables the rapid deployment and continual refinement of displacement predictions on newly established monitoring slopes.
基金the Ministry of Earth Sciences,Government of India(MoES/P.O(Geosci)/42/2015)for the grant to carry out this study
文摘Rockfall is one of severe natural hazards that are frequently reported in northeast region of India. It carries rock block falling from the cliff with high velocities and energies which can result in damages to vehicles, disruption to transportation, injuries and fatalities. The massive rockfall event which occurred in April 2017 on the highway NH-44 A, near Lengpui Airport, blocked the traffic for 1 d, and fortunately,no casualties were reported as the event occurred in the night. This is the only highway connecting the Aizawl city to the airport and the region is highly prone to rockfall events. Hence assessment of rockfall along this highway is necessary. In the current study, rockfall hazard assessment has been carried out on three locations by rockfall hazard rating system(RHRS). During pre-failure analysis, the result shows that most hazardous slopes have RHRS score of 639. The slopes were found to be vulnerable and later on the rockfall activity occurred. Three-dimensional(3 D) stability analysis has been carried out using 3 DEC software package to analyze the failure behavior and to decide the rockfall-prone zone(unstable blocks)for slope. The total displacement of 2.24 cm and velocity of 2,25 mm/s of the failed block have been observed in the numerical analysis. Further, the rockfall vulnerable zone(unstable blocks) is considered to determine the parameters such as run-out distance, bounce height and energies of the falling rock blocks. The maximum total kinetic energy of 5047 kJ has been observed in the numerical analysis with the maximum run-out distance up to 18 m.
基金funded by the National Natural Science Foundation of China (Grants No. 41877273)the Innovative Research Groups of the National Natural Science Foundation of China (Grants No. 41521002)+1 种基金the State Key Laboratory of Geohazard Disaster Prevention and Geoenvironment Protection (Chengdu University of Technology) (Grants No. SKLGP2017Z016)the Guizhou Provincial Geological Environment Monitoring Institute, and the Faer Coal Mine。
文摘During underground mining,accurate revelation on the deformation and failure mechanisms of a high-steep slope under multi-layer mining conditions facilitates the prevention and control of geological disasters in mines.Numerical simulation based on discrete element theory can be used to explore the characteristics and mechanism of action of deformation and failure of a slope under complex geological and multi-layer mining conditions.By utilising PFC2 D(particle flow code) software,the deformation and failure characteristics of a high-steep slope in Faer Coal Mine in Guizhou Province,China were investigated.Additionally,the mechanism of influence of different numbers of mining layers on the deformation and failure of the high and steep slope was elucidated.The result showed that after the goaf passed by the slope toe,multi-layer mining aggravated the subsidence and deformation of the slope toe:the slope toppled forward as it sank.The toppling of the slope changed the slope structures:the strata in the front of the slope were transformed from anti-dip to down-dip features.Extruded by collapsedtoppled rock mass,the slope toe and the rock mass located in the lower part of the slope toe generally exhibited a locking effect on the slope.Multi-layer mining degraded the overall stability of the slope,in that the total displacement of the slope was much greater than the total mining thickness of the coal seams.Based on the aforementioned research,ideas for preventing and controlling geological disasters during mining operations under a high-steep slope were proposed.
基金financially supported by the Research Grants Council of the Hong Kong Special Administrative Region(Project No.15212418)。
文摘This paper presents probabilistic assessment of seismically-induced slope displacements considering uncertainties of seismic ground motions and soil properties.A stochastic ground motion model representing both the temporal and spectral non-stationarity of earthquake shakings and a three-dimensional rotational failure mechanism are integrated to assess Newmark-type slope displacements.A new probabilistic approach that incorporates machine learning in metamodeling technique is proposed,by combining relevance vector machine with polynomial chaos expansions(RVM-PCE).Compared with other PCE methods,the proposed RVM-PCE is shown to be more effective in estimating failure probabilities.The sensitivity and relative influence of each random input parameter to the slope displacements are discussed.Finally,the fragility curves for slope displacements are established for sitespecific soil conditions and earthquake hazard levels.The results indicate that the slope displacement is more sensitive to the intensities and strong shaking durations of seismic ground motions than the frequency contents,and a critical Arias intensity that leads to the maximum annual failure probabilities can be identified by the proposed approach.
基金This research was supported by the National Natural Science Foundation of China(41807231)the project“Subsidies of innovative ability training for postgraduates”in Hebei Provincial Education Department(CXZZSS2019115)+1 种基金the“Subsidies for scientific research projects after the 16th student science and technology fund of Hebei GEO University”(KAD201906)the“Provincial Geological Exploration Project of Shanxi Department of Land and Resources”(SXZDF20170820).
文摘Considering the geological hazards attributed to the highway slope,using a common simple model cannot accurately assess the stability of the slope.First,principal component analysis(PCA)was conducted to extract the principal components of six factors(namely,bulk density,cohesion,internal friction angle,slope angle,slope height,and pore water pressure ratio)affecting the slope stability.Second,four principal components were adopted as input variables of the support vector machine(SVM)model optimized by genetic algorithm(GA).The output variable was slope stability.Lastly,the assessing model of highway slope stability based on PCA-GA-SVM is established.The maximal absolute error of the model is 0.0921 and the maximal relative error is 9.21%by comparing the assessment value and the practical value of the test sample.The above studies are conducive to enrich the assessing model of highway slope stability and provide some reference for highway slope engineering treatment.
文摘The hillside and road cuttings of most parts of the north,south and western regions of the Ethiopian Plateau have a record of instability.Landslide-generated problems claimed many lives and property damages in the country.On the road from town Fofa to Gilgel GibeⅡproject instability problem is common.Since the area is extremely rugged,the variation in the elevation is very large and
基金The Financial Support Jointly by the National Research Council of Thailand and the German Research Foundation。
文摘The devastating 2004 tsunamis that hit the southwestern coast of Thailand pose a serious threat to people along the coastal zone. A major aim for the tsunami hazard prediction is better prediction of the next tsunamis and their impacts. In this paper, we present the first implications of recent slope failure events of the Andaman outer shelf and upper slope based on a new detailed bathymetric data and subbottom profiler records acquired during two cruises of the MASS project in 2006 and 2007. Morphometric analysis reveals a variety of anomalous features,including: three large plateaus surrounded by moats, ruggedness and unevenness of slope morphology, and two translational submarine landslides. Two submarine landslides are studied from the detailed bathymetric data and subbottom profiler record covering the upper slope of the Andaman Sea shelf break within Thai exclusive economic zone. Maximum approximated volumes of both displaced masses are 4.8×10~7 m~3 and 2.2×10~7 m~3.Considering the data, there is no evidence that landslides have been the sources for tsunami hazard potential in recent geological time. These prerequisites will allow better study of slope failure events in the area. Further investigation is required to better understand obvious geotectonic phenomena.
文摘Nahaew District in northeastern Thailand, where crops out the Cretaceous Khorat Group, is a priority area for landslide hazard assessment through landslide susceptibility and hazard zoning. Through an interpretation of Google Earth imagery, several landslides were mapped to create landslide inventory map. Parameter maps were constructed and compiled into a database with the landslide inventory. The bivariate (frequency ratio) statistical analysis was used to establish landslide susceptibility maps, which were classified into five susceptibility classes. Another approach was landslide hazard zonation. Urban and rural planning and engineering construction need especially hazard zonation map in medium and local scale. GIS and remote sensing techniques have many advantages in the preparation of the map including regional, medium and local scales. In this study, landslide zonation map was prepared using runout model by assigning engineering properties and Digital Elevation Model (DEM) as well as rainfall data. The result was landslide hazard zonation of the area and can be used for urban planning. The report and recommendation have contributed to local authority.
文摘This paper presents a comparative visualization strategy of slope failure susceptibility maps for analyzing different types of simultaneous occurrences of slope failures. Through the SEM (structural equation modeling), slope failure susceptibility maps are produced by using causal factors (i.e., geographical information, satellite remotely sensed data). As for a conventional pair-wise comparative procedure, the differences between susceptibility maps are delineated on difference maps, that can be, however, applied for evaluating differences only between pairs of susceptibility maps. One of the strong requirements from specialists working on slope stability evaluation is a comparative and visualization strategy of susceptibility maps with respect to "different types of simultaneous slope failures", for which the discussion is insufficient in the previous research activities for constructing the quantitative models for slope failure hazard mapping. As a measure, a color composite map based on susceptibility maps has been produced. The combination of assigning susceptibility maps to RGB-color planes is determined based on an index of "NCCT (normalized correlated color temperature)" which represents the relationship between chromaticity and human visual perception. Through the cases examined, the result indicates that the proposed color composite map, as a heuristic visualization strategy, is useful for simultaneously evaluating the hazardous areas affected by "different types of slope failures".
文摘There is a great difference between the distribution and evolvement characteristics of slope geological hazard in the same geographical location and climatic conditions,taking the similar structural-genetic connection in Wudongde reservoir area of Jinshajiang River valley for example. In all engineering geological conditions,the chronologic age and attitude of strata,and the lithologic association factors control the distributions and evolvement characteristics of slope geological hazard in the studied area. The study shows that the slopes in geological evolution are in different stages. The conclusion helps to understand the types and the intensity of geological disasters.
文摘The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the development of four soft computing models:YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJCSA-MLPnet.First of all,the Yeo-Johnson(YJ)transformation technique was used to stabilize the variance of data and make it more suitable for parametric statistical models that assume normality and equal variances.This technique is expected to improve the accuracy of friction angle prediction models.The friction angle prediction models then utilized multi-layer perceptron neural networks(MLPnet)and metaheuristic optimization algorithms to further enhance performance,including flower pollination algorithm(FPA),coral reefs optimization(CRO),ant colony optimization continuous(ACOC),and cuckoo search algorithm(CSA).The prediction models without the YJ technique,i.e.FPA-MLPnet,CRO-MLPnet,ACOC-MLPnet,and CSA-MLPnet,were then compared to those with the YJ technique,i.e.YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJ-CSA-MLPnet.Among these,the YJ-CRO-MLPnet model demonstrated superior reliability,achieving an accuracy of up to 83%in predicting the friction angle of clay in practical engineering scenarios.This improvement is significant,as it represents an increase from 1.3%to approximately 20%compared to the models that did not utilize the YJ transformation technique.