In this paper,a detailed analysis of a phase interpolator for clock recovery is presented. A mathematical model is setup for the phase interpolator and we perform a precise analysis using this model. The result shows ...In this paper,a detailed analysis of a phase interpolator for clock recovery is presented. A mathematical model is setup for the phase interpolator and we perform a precise analysis using this model. The result shows that the output amplitude and linearity of phase interpolator is primarily related to the difference between the two input phases. A new encoding pattern is given to solve this problem. Analysis in the circuit domain was also undertaken. The simulation results show that the relation between RC time-constant and time difference of input clocks affects the linearity of the phase interpolator. To alleviate this undesired effect, two adjustable-RC buffers are added at the input of the PI. Finally,a 90nm CMOS phase interpolator,which can work in the frequency from 1GHz to 5GHz,is proposed. The power dissipation of the phase interpolator is lmW with a 1.2V power supply. Experiment results show that the phase interpolator has a monotone output phase and good linearity.展开更多
With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) meth...With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) method. The reflection of the ABC caused by both the truncated error and the phase velocity error is analyzed. Based on the phase velocity estimation and the nonuniform cell, two methods are studied and then adopted to improve the performance of the ABC. A calculation case of a rectangular waveguide which is a typical dispersive transmission line is carried out using the ADI-FDTD method with the improved ABC for evaluation. According to the calculated case, the comparison is given between the reflection coefficients of the ABC with and without the velocity estimation and also the comparison between the reflection coefficients of the ABC with and without the nonuniform processing. The reflection variation of the ABC under different time steps is also analyzed and the acceptable worsening will not obscure the improvement on the absorption. Numerical results obviously show that efficient improvement on the absorbing performance of the ABC is achieved based on these methods for the ADI-FDTD.展开更多
In this paper, a phase interpolator clock and data recovery (CDR) with low-voltage current mode logic (CML) latched, buffers, and muxes is presented. Because of using the CML circuits, the CDR can operate in a low...In this paper, a phase interpolator clock and data recovery (CDR) with low-voltage current mode logic (CML) latched, buffers, and muxes is presented. Because of using the CML circuits, the CDR can operate in a low supply voltage. And the original swing of the differential inputs and outputs is less than that of the CMOS logic. The power supply voltage is 1.2 V, and the static current consumption is about 20 mA. In this phase interpolator CDR, the charge pump and loop filter are replaced by a digital filter. And this structure offers the benefits of increased system stability and faster acquisition.展开更多
We apply a Peak Shrinking and Interpolating(PSI)scheme to improve the Peak-to-Average Power Ratio(PAPR)performance in Multiple Intermediate-Frequency-over-Fiber(M-IFoF)based mobile fronthaul.The key idea is to detect ...We apply a Peak Shrinking and Interpolating(PSI)scheme to improve the Peak-to-Average Power Ratio(PAPR)performance in Multiple Intermediate-Frequency-over-Fiber(M-IFoF)based mobile fronthaul.The key idea is to detect the high peaks of the signal and shrink them,and then the shrunk peak values are interpolated into the original signal to reduce the PAPR.We also compare the PSI technique with the previous Tone-Reservation(TR)technique and Phase Pre-Distortion(PPD)technique in terms of PAPR reduction effect and computational complexity.The simulation results indicate that the PSI scheme can reduce the PAPR by more than 4.3 dB at 0.1%CCDF,which outperforms the two previous schemes with lower computational complexity.Furthermore,we find that altering M-IFoF system parameters has little effect on the performance of the PSI technique.展开更多
文摘In this paper,a detailed analysis of a phase interpolator for clock recovery is presented. A mathematical model is setup for the phase interpolator and we perform a precise analysis using this model. The result shows that the output amplitude and linearity of phase interpolator is primarily related to the difference between the two input phases. A new encoding pattern is given to solve this problem. Analysis in the circuit domain was also undertaken. The simulation results show that the relation between RC time-constant and time difference of input clocks affects the linearity of the phase interpolator. To alleviate this undesired effect, two adjustable-RC buffers are added at the input of the PI. Finally,a 90nm CMOS phase interpolator,which can work in the frequency from 1GHz to 5GHz,is proposed. The power dissipation of the phase interpolator is lmW with a 1.2V power supply. Experiment results show that the phase interpolator has a monotone output phase and good linearity.
基金The National Natural Science Foundation of China(No.60702027)the Free Research Fund of the National Mobile Communications Research Laboratory of Southeast University (No.2008B07)the National Basic Research Program of China(973 Program)(No.2007CB310603)
文摘With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) method. The reflection of the ABC caused by both the truncated error and the phase velocity error is analyzed. Based on the phase velocity estimation and the nonuniform cell, two methods are studied and then adopted to improve the performance of the ABC. A calculation case of a rectangular waveguide which is a typical dispersive transmission line is carried out using the ADI-FDTD method with the improved ABC for evaluation. According to the calculated case, the comparison is given between the reflection coefficients of the ABC with and without the velocity estimation and also the comparison between the reflection coefficients of the ABC with and without the nonuniform processing. The reflection variation of the ABC under different time steps is also analyzed and the acceptable worsening will not obscure the improvement on the absorption. Numerical results obviously show that efficient improvement on the absorbing performance of the ABC is achieved based on these methods for the ADI-FDTD.
基金supported by the Fundamental Research Funds for the Central Universities under Grant No.2009JBM001
文摘In this paper, a phase interpolator clock and data recovery (CDR) with low-voltage current mode logic (CML) latched, buffers, and muxes is presented. Because of using the CML circuits, the CDR can operate in a low supply voltage. And the original swing of the differential inputs and outputs is less than that of the CMOS logic. The power supply voltage is 1.2 V, and the static current consumption is about 20 mA. In this phase interpolator CDR, the charge pump and loop filter are replaced by a digital filter. And this structure offers the benefits of increased system stability and faster acquisition.
文摘We apply a Peak Shrinking and Interpolating(PSI)scheme to improve the Peak-to-Average Power Ratio(PAPR)performance in Multiple Intermediate-Frequency-over-Fiber(M-IFoF)based mobile fronthaul.The key idea is to detect the high peaks of the signal and shrink them,and then the shrunk peak values are interpolated into the original signal to reduce the PAPR.We also compare the PSI technique with the previous Tone-Reservation(TR)technique and Phase Pre-Distortion(PPD)technique in terms of PAPR reduction effect and computational complexity.The simulation results indicate that the PSI scheme can reduce the PAPR by more than 4.3 dB at 0.1%CCDF,which outperforms the two previous schemes with lower computational complexity.Furthermore,we find that altering M-IFoF system parameters has little effect on the performance of the PSI technique.