In this study, characteristics of flow field and wave propagation near submerged breakwater on a sloping bed are investigated with numerical model. The governing equations of the vertical two-dimensional model are Rey...In this study, characteristics of flow field and wave propagation near submerged breakwater on a sloping bed are investigated with numerical model. The governing equations of the vertical two-dimensional model are Reynolds Averaged Navier Stokes equations. The Reynolds stress terms are closed by a nonlinear k - ε turbulence transportation model. The free surface is traced through the PILC-VOF method. The proposed numerical model is verified with experimental results. The numerical result shows that the wave profile may become more asymmetrical when wave propagates over breakwater. When wave crest propagates over breakwater, the anticlockwise vortex may generate. On the contrary, when wave hollow propagates over breakwater, the clockwise vortex may generate. Meanwhile, the influenced zone of vortex created by wave crest is larger than that created by wave hollow. All the maximum values of the turbulent kinetic energy, turbulent dissipation and eddy viscosity occur on the top of breakwater. Both the turbulent dissipation and eddy viscosity increase as the turbulent kinetic energy increases. Wave energy may rapidly decrease near the breakwater because turbulent dissipation increases and energy in lower harmonics is transferred into higher harmonics.展开更多
By applying the theory of structural reliability, reliability analyses for the stability of a breast wall on the top of a sloping breakwater are carried out. Based on the analyses, the method for determining partial a...By applying the theory of structural reliability, reliability analyses for the stability of a breast wall on the top of a sloping breakwater are carried out. Based on the analyses, the method for determining partial action / load factors and partial resistance factors of breast walls is expounded, and the design expressions with partial factors are given. The values of partial action / load factors and partial resistance factors are recommended preliminarily according to the computation for breast walls with typical cross-sections.展开更多
The irregular wave experiment on the stability of the Grate Plate was carried out in the light of the wind wave spectrum recently advanced by Prof. Wen Shengchang. The stability formulas of GP under the action of irre...The irregular wave experiment on the stability of the Grate Plate was carried out in the light of the wind wave spectrum recently advanced by Prof. Wen Shengchang. The stability formulas of GP under the action of irregular waves were procured. Comparisons between the formulas obtained and those of GP under regular waves advanced by the first author in 1993 showed a coincident result.展开更多
Based on physical model tests, the rubble mound toe structure stability under the action of both regular and irregular waves is studied. Test results show that wave height and water depth at the toe structure are the ...Based on physical model tests, the rubble mound toe structure stability under the action of both regular and irregular waves is studied. Test results show that wave height and water depth at the toe structure are the most important factors affecting the stability of toe berm stone, and that irregular waves cause greater damage to the toe structure than regular waves. Analyses prove that the Gerding formula agrees better with our test results than the Meer formula. Tests on two different types of main armors also indicate that the shape and composition of the main armor have effect on the stability of the toe structure.展开更多
In this study, we investigated wave transformation and wave set-up between a submerged permeable breakwater and a seawall. Modified time-dependent mild-slope equations, which involve parameters of the porous medium, w...In this study, we investigated wave transformation and wave set-up between a submerged permeable breakwater and a seawall. Modified time-dependent mild-slope equations, which involve parameters of the porous medium, were used to calculate the wave height transformation and the mean water level change around a submerged breakwater. The numerical solution is verified with experimental data. The simulated results show that modulations of the wave profile and wave set-up are clearly observed between the submerged breakwater and the seawall. In contrast to cases without a seawall, the node or pseudo-node of wave height evolution can be found between the submerged breakwater and the seawall. Higher wave set-up occurs if the nodal or pseudo-nodal point appears near the submerged breakwater. We also examined the influence of the porosity and friction factor of the submerged permeable breakwater on wave transformation and set-up.展开更多
基金The National Natural Science Foundation of China under contract Nos 50979008 and 50909009Program for Hunan Province Key Laboratory of WaterSediment Sciences & Flood Hazard Prevention and Open Research Fund Program of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University No.2008490911
文摘In this study, characteristics of flow field and wave propagation near submerged breakwater on a sloping bed are investigated with numerical model. The governing equations of the vertical two-dimensional model are Reynolds Averaged Navier Stokes equations. The Reynolds stress terms are closed by a nonlinear k - ε turbulence transportation model. The free surface is traced through the PILC-VOF method. The proposed numerical model is verified with experimental results. The numerical result shows that the wave profile may become more asymmetrical when wave propagates over breakwater. When wave crest propagates over breakwater, the anticlockwise vortex may generate. On the contrary, when wave hollow propagates over breakwater, the clockwise vortex may generate. Meanwhile, the influenced zone of vortex created by wave crest is larger than that created by wave hollow. All the maximum values of the turbulent kinetic energy, turbulent dissipation and eddy viscosity occur on the top of breakwater. Both the turbulent dissipation and eddy viscosity increase as the turbulent kinetic energy increases. Wave energy may rapidly decrease near the breakwater because turbulent dissipation increases and energy in lower harmonics is transferred into higher harmonics.
文摘By applying the theory of structural reliability, reliability analyses for the stability of a breast wall on the top of a sloping breakwater are carried out. Based on the analyses, the method for determining partial action / load factors and partial resistance factors of breast walls is expounded, and the design expressions with partial factors are given. The values of partial action / load factors and partial resistance factors are recommended preliminarily according to the computation for breast walls with typical cross-sections.
文摘The irregular wave experiment on the stability of the Grate Plate was carried out in the light of the wind wave spectrum recently advanced by Prof. Wen Shengchang. The stability formulas of GP under the action of irregular waves were procured. Comparisons between the formulas obtained and those of GP under regular waves advanced by the first author in 1993 showed a coincident result.
文摘Based on physical model tests, the rubble mound toe structure stability under the action of both regular and irregular waves is studied. Test results show that wave height and water depth at the toe structure are the most important factors affecting the stability of toe berm stone, and that irregular waves cause greater damage to the toe structure than regular waves. Analyses prove that the Gerding formula agrees better with our test results than the Meer formula. Tests on two different types of main armors also indicate that the shape and composition of the main armor have effect on the stability of the toe structure.
基金supported by The Science Council of Taiwan under Grant No. 95-2221-E-005-154
文摘In this study, we investigated wave transformation and wave set-up between a submerged permeable breakwater and a seawall. Modified time-dependent mild-slope equations, which involve parameters of the porous medium, were used to calculate the wave height transformation and the mean water level change around a submerged breakwater. The numerical solution is verified with experimental data. The simulated results show that modulations of the wave profile and wave set-up are clearly observed between the submerged breakwater and the seawall. In contrast to cases without a seawall, the node or pseudo-node of wave height evolution can be found between the submerged breakwater and the seawall. Higher wave set-up occurs if the nodal or pseudo-nodal point appears near the submerged breakwater. We also examined the influence of the porosity and friction factor of the submerged permeable breakwater on wave transformation and set-up.