期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Analysis and Comparison of Slope-cutting Widening Schemes in Highway Reconstruction and Expansion Project Based on MIDAS Software
1
作者 Zhiqiang Qiu Yun Shi Lei Jiang 《Journal of Architectural Research and Development》 2024年第2期75-83,共9页
In this paper,the geological condition of the right-side slope of the K114+694–K115+162 section of Yong-tai-wen Expressway is investigated and analyzed with the results showing that the strength of rock mass is the m... In this paper,the geological condition of the right-side slope of the K114+694–K115+162 section of Yong-tai-wen Expressway is investigated and analyzed with the results showing that the strength of rock mass is the main contributor to the stability of the slope.Then,two widening schemes are proposed,which are the steep slope with strong support and the gentle slope with general support schemes.The static/slope module of MIDAS GTS finite element analysis software and the strength reduction method were used to compare the two schemes.The results show that the steep slope with a strong support scheme has obvious advantages in land requisition,environmental protection,and safety and is more suitable for reconstructing and expanding the highway slope. 展开更多
关键词 Highway reconstruction and expansion Slope excavation MIDAS GTS Scheme selection
下载PDF
Influence of excavation schemes on slope stability: A DEM study 被引量:7
2
作者 WANG Zhen-yu GU Dong-ming ZHANG Wen-gang 《Journal of Mountain Science》 SCIE CSCD 2020年第6期1509-1522,共14页
Slope failure due to improper excavation is one of common engineering disasters in China.To explore the failure mechanism of soil slope induced by toe excavation,especially to investigate the influence of excavation u... Slope failure due to improper excavation is one of common engineering disasters in China.To explore the failure mechanism of soil slope induced by toe excavation,especially to investigate the influence of excavation unloading path and rate on slope stability,a numerical slope model was built via particle flow code PFC2 D.The development of crack and strain during excavation were obtained and used to evaluate the deformation characteristics.Furthermore,excavation types representing different unloading paths and rates were compared in terms of crack number and strain level.Results indicate that crack number and strain level induced by horizontal column excavation are much greater than those of vertical column excavation and oblique excavation.The crack number and strain level increase with excavation unloading rate.Besides,the feasibility of taking the average strain of slope surface and the average value of maximum strain along monitoring lines to represent the global deformation characteristics were discussed.This study can provide a theoretical guidance for slope monitoring and preliminary optimal selection of excavation scheme in the design and construction of slope engineering. 展开更多
关键词 Slope toe excavation Unloading path Unloading rate Strain distribution Slope stability Discrete element method
下载PDF
Finite element analysis of steep excavation slope failure by CFS theory 被引量:2
3
作者 Huihong Cheng Huai Zhang +1 位作者 Bojing Zhu Yaolin Shi 《Earthquake Science》 CSCD 2012年第2期177-185,共9页
The distribution of Coulomb failure stress (CFS) change in the steep excavation slope is calculated by finite element method in this paper, and the failure mechanics under different conditions have been investigated... The distribution of Coulomb failure stress (CFS) change in the steep excavation slope is calculated by finite element method in this paper, and the failure mechanics under different conditions have been investigated. Comparing the CFSs before and after the slope excavation (stress loading and unloading processes), the dangerous internal zone and the most likely failure external area are attained. Given the shear cracks on the top surface while tensile stress or cracks along the toe of the slope, we analyze the high cutting-angle steep slope in Kaixian county of the Three Gorges Reservoir region. We bring forward that the peak value of CFS after excavation can reach to the order of 0.1 MPa, which is greatly higher than that of before. Our preliminary results are useful for optimizing the reinforcement structure during the steep slope stabilization engineering. 展开更多
关键词 Coulomb failure stress stabilization and failure evaluation steep slope excavation
下载PDF
Slope excavation quality assessment and excavated volume calculation in hydraulic projects based on laser scanning technology 被引量:5
4
作者 Chao Hu Yi-hong Zhou +1 位作者 Chun-ju Zhao Zhi-guo Pan 《Water Science and Engineering》 EI CAS CSCD 2015年第2期164-173,共10页
Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positio... Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak,cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laserscanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation quality assessment with the laser scanning technology can be reduced by 70%e90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study. 展开更多
关键词 Slope excavation Quality assessment Volume calculation Three-dimensional laser scanning technology
下载PDF
Slope deformation partitioning and monitoring points optimization based on cluster analysis
5
作者 LI Yuan-zheng SHEN Jun-hui +3 位作者 ZHANG Wei-xin ZHANG Kai-qiang PENG Zhang-hai HUANG Meng 《Journal of Mountain Science》 SCIE CSCD 2023年第8期2405-2421,共17页
The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine... The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine the number and location of monitoring points according to the actual deformation characteristics of the slope.There are still some defects in the layout of monitoring points.To this end,based on displacement data series and spatial location information of surface displacement monitoring points,by combining displacement series correlation and spatial distance influence factors,a spatial deformation correlation calculation model of slope based on clustering analysis was proposed to calculate the correlation between different monitoring points,based on which the deformation area of the slope was divided.The redundant monitoring points in each partition were eliminated based on the partition's outcome,and the overall optimal arrangement of slope monitoring points was then achieved.This method scientifically addresses the issues of slope deformation zoning and data gathering overlap.It not only eliminates human subjectivity from slope deformation zoning but also increases the efficiency and accuracy of slope monitoring.In order to verify the effectiveness of the method,a sand-mudstone interbedded CounterTilt excavation slope in the Chongqing city of China was used as the research object.Twenty-four monitoring points deployed on this slope were monitored for surface displacement for 13 months.The spatial location of the monitoring points was discussed.The results show that the proposed method of slope deformation zoning and the optimized placement of monitoring points are feasible. 展开更多
关键词 excavation slope Surface displacement monitoring Spatial deformation analysis Clustering analysis Slope deformation partitioning Monitoring point optimization
下载PDF
Comprehensive Analysis Method of Slope Stability Based on the Limit Equilibrium and Finite Element Methods and Its Application
6
作者 Yajun Wang Yifeng Li Jinzhou Chen 《Open Journal of Civil Engineering》 2023年第4期555-571,共17页
To study the safety and stability of large slopes, taking the right side slope of the Yuxi’an tunnel of the Yuchu Expressway Bridge in Yunnan Province as an example, limit equilibrium and finite element analysis were... To study the safety and stability of large slopes, taking the right side slope of the Yuxi’an tunnel of the Yuchu Expressway Bridge in Yunnan Province as an example, limit equilibrium and finite element analysis were applied to engineering examples to calculate the stability coefficient of the slope before and after excavation in the natural state. After comparative analysis, it was concluded that the former had a clear mechanical model and concept, which could quickly provide stability results;the latter could accurately determine the sliding surface of the slope and simulate the stress state changes of the rock and soil mass. The stability coefficients calculated by the two methods were within the stable range, but their values were different. On this basis, combined with the calculation principles, advantages and disadvantages of the two methods, a comprehensive analysis method of slope stability based on the limit equilibrium and finite element methods was proposed, and the rationality of the stability coefficient calculated by this method was judged for a slope case. 展开更多
关键词 Slope Body excavation Mechanical Model Sliding Surface Coefficient of Stability Calculation Principle Comprehensive Analysis Method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部