期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research on shell-side heat and mass transfer with multi-component in LNG spiral-wound heat exchanger under sloshing conditions
1
作者 Xue-Ping Du Guang-Lei Yu +3 位作者 Ya-Cheng Xu Zhi-Jie Chen Nai-Liang Li Huan-Guang Wang 《Petroleum Science》 SCIE EI CAS 2024年第2期1333-1345,共13页
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud... The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions. 展开更多
关键词 Spiral-wound heat exchanger sloshing conditions Two-phase flow Multi-component Heat and mass transfer
下载PDF
Numerical Study of Heat Transfer Characteristic for Subcooled Falling Film outside the Shaped Tubes under Rolling Motion
2
作者 HAN Hui WANG Junqi +1 位作者 WANG Shaowei LI Yuxing 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第3期922-932,共11页
The heat transfer performance of spiral wound heat exchanger used in the floating liquefied natural gas(FLNG)may be significantly affected by the sloshing conditions.In this paper,a three-dimensional numerical model c... The heat transfer performance of spiral wound heat exchanger used in the floating liquefied natural gas(FLNG)may be significantly affected by the sloshing conditions.In this paper,a three-dimensional numerical model combined with the dynamic mesh technology is conducted to study subcooled falling film heat transfer under static and sloshing conditions.The three-dimensional velocity distribution of the liquid film on the shell side is observed.The effects of cross-section shape of heat exchange tubes,Reynolds numbers and sloshing parameters on heat transfer characteristics are analyzed.The results indicate that the heat transfer performance of the egg-shaped tube is superior to that of the elliptical and circular tube under both static and sloshing conditions due to significant heat transfer improvement in the lower half of the tube.The heat transfer coefficients of three different kinds of tubes decrease under sloshing conditions.When the rolling amplitude is 6°,the average heat transfer coefficients of the circular tube,elliptical tube and egg-shaped tube are reduced by 2.1%,3.7%and 4.9%respectively.Under the current sloshing parameters,increasing the rolling amplitude,the heat transfer coefficients of three different tubes are slightly increased,while the sloshing period has little effect on heat transfer.The egg-shaped tube and elliptical tube are greatly affected by sloshing motion at the low Reynolds number,while the effect is relatively small at the high Reynolds number. 展开更多
关键词 falling film flow sloshing condition spiral wound heat exchanger floating liquefied natural gas
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部