Numerical investigations are conducted to explore the aerodynamic characteristics of three-dimensional Co-Flow Jet(CFJ) wing with simple high-lift devices during low-speed takeoff and landing. Effects of three crucial...Numerical investigations are conducted to explore the aerodynamic characteristics of three-dimensional Co-Flow Jet(CFJ) wing with simple high-lift devices during low-speed takeoff and landing. Effects of three crucial parameters of CFJ wing, i.e., angle of attack, jet momentum and swept angle, are comprehensively examined. Additionally, the aerodynamic characteristics of two CFJ configurations, i.e., using open and discrete slots for injection, are compared. The results show that applying CFJ technique to a wing with simple high-lift device is able to generate more lift,reduce drag and enlarge stall margin with lower energy expenditure due to the super-circulation effect. Increasing the jet intensity can reduce the drag significantly, which is mainly contributed by the reaction jet force. The Oswald efficiency factor is, in some circumstances, larger than one,which indicates the potential of CFJ in reducing induced drag. Compared with clean wing configuration, using CFJ technique allows the aerodynamic force variation less sensitive to the swept angle, and such phenomenon is better observed for small swept angle region. Eventually, it is interesting to know that the discrete slotted CFJ configuration demonstrates a promising enhancement in aerodynamic performance in terms of high lift, low drag and efficiency.展开更多
基金the National Natural Science Foundation of China (No. 11672133)the Fundamental Research Funds for the Central Universities, China (No. kfjj20180104)support from Rotor Aerodynamics Key Laboratory, China (No. RAL20190202-2/RAL20190101-1)
文摘Numerical investigations are conducted to explore the aerodynamic characteristics of three-dimensional Co-Flow Jet(CFJ) wing with simple high-lift devices during low-speed takeoff and landing. Effects of three crucial parameters of CFJ wing, i.e., angle of attack, jet momentum and swept angle, are comprehensively examined. Additionally, the aerodynamic characteristics of two CFJ configurations, i.e., using open and discrete slots for injection, are compared. The results show that applying CFJ technique to a wing with simple high-lift device is able to generate more lift,reduce drag and enlarge stall margin with lower energy expenditure due to the super-circulation effect. Increasing the jet intensity can reduce the drag significantly, which is mainly contributed by the reaction jet force. The Oswald efficiency factor is, in some circumstances, larger than one,which indicates the potential of CFJ in reducing induced drag. Compared with clean wing configuration, using CFJ technique allows the aerodynamic force variation less sensitive to the swept angle, and such phenomenon is better observed for small swept angle region. Eventually, it is interesting to know that the discrete slotted CFJ configuration demonstrates a promising enhancement in aerodynamic performance in terms of high lift, low drag and efficiency.