Tunable stimulated-Brillouin-scattering (SBS)-based slow-light in optical fibers has potential applications in optical buffering in the future all-optical router commutation systems. However, due to the low SBS thresh...Tunable stimulated-Brillouin-scattering (SBS)-based slow-light in optical fibers has potential applications in optical buffering in the future all-optical router commutation systems. However, due to the low SBS threshold and relatively high realistic signal power, the gain in the usual SBS systems is limited at^30 dB. This paper presents a high-gain SBS scheme to realize large delay slow-light, which benefits from avoiding the depletion of the pump power in a short fiber as SBS media. The experiment demonstrates that, up to 50 dB non-saturated gain has been observed in the single-stage 591.8 m fiber SBS amplification. The slow-light delay can be obtained 52 ns, and the fractional delay can exceed 1.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 10874118)"SMC Young Star" Scientist Program of Shanghai Jiao Tong University
文摘Tunable stimulated-Brillouin-scattering (SBS)-based slow-light in optical fibers has potential applications in optical buffering in the future all-optical router commutation systems. However, due to the low SBS threshold and relatively high realistic signal power, the gain in the usual SBS systems is limited at^30 dB. This paper presents a high-gain SBS scheme to realize large delay slow-light, which benefits from avoiding the depletion of the pump power in a short fiber as SBS media. The experiment demonstrates that, up to 50 dB non-saturated gain has been observed in the single-stage 591.8 m fiber SBS amplification. The slow-light delay can be obtained 52 ns, and the fractional delay can exceed 1.