The Integrate and Fire (IF) neuron model wasusedto simulate ultra-slow oscillations that were observed in cortical cultures. Simulation of a network with 2 sub-networks is conducted in this study. We introduced an add...The Integrate and Fire (IF) neuron model wasusedto simulate ultra-slow oscillations that were observed in cortical cultures. Simulation of a network with 2 sub-networks is conducted in this study. We introduced an additional equation that governs the generation and dissipation of an inhibitory property to each of the sub-network.Sub-networks that fire at different rate are generated from the simulation. The network activity from the simulation oscillates at frequencies that are comparable to ultra-slow oscillations observed in cortical cultures.展开更多
A modified slow-fast analysis method is presented for the periodically excited non-autonomous dynamical system with an order gap between the exciting frequency and the natural frequency.By regarding the exciting term ...A modified slow-fast analysis method is presented for the periodically excited non-autonomous dynamical system with an order gap between the exciting frequency and the natural frequency.By regarding the exciting term as a slow-varying parameter,a generalized autonomous fast subsystem can be defined,the equilibrium branches as well as the bifurcations of which can be employed to account for the mechanism of the bursting oscillations by combining the transformed phase portrait introduced.As an example,a typical periodically excited Hartley model is used to demonstrate the validness of the method,in which the exciting frequency is far less than the natural frequency.The equilibrium branches and their bifurcations of the fast subsystem with the variation of the slow-varying parameter are presented.Bursting oscillations for two typical cases are considered,which reveals that,fold bifurcation may cause the the trajectory to jump between different equilibrium branches,while Hopf bifurcation may cause the trajectory to oscillate around the stable limit cycle.展开更多
A watt-class backward wave oscillator is proposed, using the concise sine waveguide slow-wave structure combined with a pencil electron beam to operate at 220 GHz. Firstly, the dispersion curve of the sine waveguide i...A watt-class backward wave oscillator is proposed, using the concise sine waveguide slow-wave structure combined with a pencil electron beam to operate at 220 GHz. Firstly, the dispersion curve of the sine waveguide is calculated, then, the oscillation frequency and operating voltage of the device are predicted and the circuit transmission loss is calculated. Finally, the particle-in-cell simulation method is used to forecast its radiation performance. The results show that this novel backward wave oscillator can produce over 1-W continuous wave power output in a frequency range from 210 GHz to 230 GHz. Therefore, it will be considered as a very promising high-power millimeter-wave to terahertz-wave radiation source.展开更多
This paper investigates the effects of quantum well size changes on center frequency and slow down factor of an slow light device. In this way, we consider the quantum well size alteration effects on oscillator streng...This paper investigates the effects of quantum well size changes on center frequency and slow down factor of an slow light device. In this way, we consider the quantum well size alteration effects on oscillator strength and binding energy of exciton. First, we investigate the variations in oscillator strength of exciton due to different quantum well size. Second, exciton binding energy level shift due to size of quantum well is investigated. According to this analysis, we have developed a new method for tuning slow light device bandwidth center frequency and slow down factor. Analysis and simulation of a basic GaAs/AlGaAs quantum wells optical slow light device based on excitonic population oscillation shows that size of quantum wells could tune both of the frequency properties and slow down factor of an optical slow light device. In our simulation with 34 quantum wells each with the width of 60?, we have received the slow down factor of more than 60,000. These achievements are useful in optical nonlinearity enhancements, all-optical signal processing applications and optical communications.展开更多
<div style="text-align:justify;"> A high-efficiency ridged magnetically insulated transmission line oscillator (RMILO) is proposed and investigated theoretically and numerically in this paper. In the R...<div style="text-align:justify;"> A high-efficiency ridged magnetically insulated transmission line oscillator (RMILO) is proposed and investigated theoretically and numerically in this paper. In the RMILO, ridge-disk vanes are introduced to enhance the power efficiency. Theoretical investigation shows that the ridge-disk can enhance the coupling impedance of the slow-wave structure (SWS), and so enhance the power efficiency. Moreover, the ridge has a weak influence on frequency, so, it influences little on the tunability of the MILO. In simulation, when the applied voltage is increased to 807 kV, the RMILO can get the 3 dB tunable frequency range with 7.6 - 13.9 GHz and the 3 dB tuning bandwidth with 58.6% which has an increase of 27.6% compared with the conventional MILO. So, the tuning performance of the RMILO is more superior. Besides, the RMILO gets the maximum output power of 7.1 GW, the corresponding power efficiency is 22.6% and the frequency is 1.400 GHz. Furthermore, when the applied voltage is increased to 807 kV, high-power microwave with a power of 13.5 GW, frequency of 1.400 GHz, and ef?ciency of 24.5% is generated, which has an increase of 20.2% compared with the conventional MILO. The simulation results con?rm the ones predicted by theoretical analysis. </div>展开更多
In this paper we simulate and analyze a sample of slow light semiconducting device with quantum dot structure based on coherent population oscillation (CPO). The simulation is conducted to enhance the main parameters ...In this paper we simulate and analyze a sample of slow light semiconducting device with quantum dot structure based on coherent population oscillation (CPO). The simulation is conducted to enhance the main parameters of slow light device and a method is presented for setting the output specifications of this kind of devices. In this paper, we deal with changing the size of quantum dot to find the ideal size. The simulation results indicate that as the size of quantum dot changes properly (with reducing more than 50 percent of quantum dots both radius and height), then the slope of diagram of the real part of refractive index increases significantly so that the Slow Down Factor (SDF) predicted to be18 times greater. Analysis and simulations based on cylinderical quantum dots structure slow light devices based on exitonic cpo.展开更多
研究反馈控制环节时滞对van der Pol振子张弛振荡的影响.首先,通过稳定性切换分析,得到了系统的慢变流形的稳定性和分岔点分布图,结果表明,当时滞大于某临界值时,系统慢变流形的结构发生本质的变化.其次,基于几何奇异摄动理论,分析了慢...研究反馈控制环节时滞对van der Pol振子张弛振荡的影响.首先,通过稳定性切换分析,得到了系统的慢变流形的稳定性和分岔点分布图,结果表明,当时滞大于某临界值时,系统慢变流形的结构发生本质的变化.其次,基于几何奇异摄动理论,分析了慢变流形附近解轨线的形状,发现时滞反馈会引起张弛振荡中的慢速运动过程中存在微幅振荡,其中微幅振荡来自于内部层引起的振荡和Hopf分岔产生的振荡两个方面;同时,时滞对张弛振荡的周期也具有显著的影响.实例分析表明理论分析结果与数值结果相吻合.展开更多
文摘The Integrate and Fire (IF) neuron model wasusedto simulate ultra-slow oscillations that were observed in cortical cultures. Simulation of a network with 2 sub-networks is conducted in this study. We introduced an additional equation that governs the generation and dissipation of an inhibitory property to each of the sub-network.Sub-networks that fire at different rate are generated from the simulation. The network activity from the simulation oscillates at frequencies that are comparable to ultra-slow oscillations observed in cortical cultures.
基金supported by the National Natural Science Foundation of China(Grants11632008 and 11872189)
文摘A modified slow-fast analysis method is presented for the periodically excited non-autonomous dynamical system with an order gap between the exciting frequency and the natural frequency.By regarding the exciting term as a slow-varying parameter,a generalized autonomous fast subsystem can be defined,the equilibrium branches as well as the bifurcations of which can be employed to account for the mechanism of the bursting oscillations by combining the transformed phase portrait introduced.As an example,a typical periodically excited Hartley model is used to demonstrate the validness of the method,in which the exciting frequency is far less than the natural frequency.The equilibrium branches and their bifurcations of the fast subsystem with the variation of the slow-varying parameter are presented.Bursting oscillations for two typical cases are considered,which reveals that,fold bifurcation may cause the the trajectory to jump between different equilibrium branches,while Hopf bifurcation may cause the trajectory to oscillate around the stable limit cycle.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 61125103)the National Natural Science Foundation of China (Grant Nos. 60971038 and 60971031)the Fundamental Research Funds for the Central Universities,China (Grant No. ZYGX2009Z003)
文摘A watt-class backward wave oscillator is proposed, using the concise sine waveguide slow-wave structure combined with a pencil electron beam to operate at 220 GHz. Firstly, the dispersion curve of the sine waveguide is calculated, then, the oscillation frequency and operating voltage of the device are predicted and the circuit transmission loss is calculated. Finally, the particle-in-cell simulation method is used to forecast its radiation performance. The results show that this novel backward wave oscillator can produce over 1-W continuous wave power output in a frequency range from 210 GHz to 230 GHz. Therefore, it will be considered as a very promising high-power millimeter-wave to terahertz-wave radiation source.
文摘This paper investigates the effects of quantum well size changes on center frequency and slow down factor of an slow light device. In this way, we consider the quantum well size alteration effects on oscillator strength and binding energy of exciton. First, we investigate the variations in oscillator strength of exciton due to different quantum well size. Second, exciton binding energy level shift due to size of quantum well is investigated. According to this analysis, we have developed a new method for tuning slow light device bandwidth center frequency and slow down factor. Analysis and simulation of a basic GaAs/AlGaAs quantum wells optical slow light device based on excitonic population oscillation shows that size of quantum wells could tune both of the frequency properties and slow down factor of an optical slow light device. In our simulation with 34 quantum wells each with the width of 60?, we have received the slow down factor of more than 60,000. These achievements are useful in optical nonlinearity enhancements, all-optical signal processing applications and optical communications.
文摘<div style="text-align:justify;"> A high-efficiency ridged magnetically insulated transmission line oscillator (RMILO) is proposed and investigated theoretically and numerically in this paper. In the RMILO, ridge-disk vanes are introduced to enhance the power efficiency. Theoretical investigation shows that the ridge-disk can enhance the coupling impedance of the slow-wave structure (SWS), and so enhance the power efficiency. Moreover, the ridge has a weak influence on frequency, so, it influences little on the tunability of the MILO. In simulation, when the applied voltage is increased to 807 kV, the RMILO can get the 3 dB tunable frequency range with 7.6 - 13.9 GHz and the 3 dB tuning bandwidth with 58.6% which has an increase of 27.6% compared with the conventional MILO. So, the tuning performance of the RMILO is more superior. Besides, the RMILO gets the maximum output power of 7.1 GW, the corresponding power efficiency is 22.6% and the frequency is 1.400 GHz. Furthermore, when the applied voltage is increased to 807 kV, high-power microwave with a power of 13.5 GW, frequency of 1.400 GHz, and ef?ciency of 24.5% is generated, which has an increase of 20.2% compared with the conventional MILO. The simulation results con?rm the ones predicted by theoretical analysis. </div>
文摘In this paper we simulate and analyze a sample of slow light semiconducting device with quantum dot structure based on coherent population oscillation (CPO). The simulation is conducted to enhance the main parameters of slow light device and a method is presented for setting the output specifications of this kind of devices. In this paper, we deal with changing the size of quantum dot to find the ideal size. The simulation results indicate that as the size of quantum dot changes properly (with reducing more than 50 percent of quantum dots both radius and height), then the slope of diagram of the real part of refractive index increases significantly so that the Slow Down Factor (SDF) predicted to be18 times greater. Analysis and simulations based on cylinderical quantum dots structure slow light devices based on exitonic cpo.
文摘研究反馈控制环节时滞对van der Pol振子张弛振荡的影响.首先,通过稳定性切换分析,得到了系统的慢变流形的稳定性和分岔点分布图,结果表明,当时滞大于某临界值时,系统慢变流形的结构发生本质的变化.其次,基于几何奇异摄动理论,分析了慢变流形附近解轨线的形状,发现时滞反馈会引起张弛振荡中的慢速运动过程中存在微幅振荡,其中微幅振荡来自于内部层引起的振荡和Hopf分岔产生的振荡两个方面;同时,时滞对张弛振荡的周期也具有显著的影响.实例分析表明理论分析结果与数值结果相吻合.