[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei ho...[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei hot pepper(Capsicum frutescens L.)as the experimental material,we studied the fertilization effect and environment-protecting effect of SCRF.[Result] The result showed that SCRF could improve the agronomic characteristics of hot pepper.Compared to singly applied common fertilizers,SCRF increased economic yield by 20.90% and economic benefit by 13 234.35 Yuan/hm2,and the ratio of output to input was improved by 47.93%.In comparison with common straight fertilizers at same NPK proportion and rate,SCRF increased economic yield by 5.26% and economic benefit by 5 554.80 Yuan/hm2,and the ratio of output to input was improved by 9.91%.Under the reduced use of SCRF by 20%,SCRF increased economic yield by 12.38% and economic benefit by 9595.20 Yuan/hm2 compared with singly applied common fertilizers,and the ratio of output to input was improved by 65.95%.SCRF improved nitrogen,phosphorus and potassium use efficiencies by 12.42-17.53,3.35-5.24 and 5.37-14.02 percents respectively.[Conclusion] As the result of much reduced N and P application rates,SCRF would significantly economize fertilizer resources and minimize the pollution caused by the loss of fertilizer nutrients,which is of practical importance for environment protection.展开更多
Slow/controlled release fertilizers (SRFs/CRFs) have been paid more at- tentions by the researchersin recent years. In this paper, the application effects and methods, types, current problem and development prospect...Slow/controlled release fertilizers (SRFs/CRFs) have been paid more at- tentions by the researchersin recent years. In this paper, the application effects and methods, types, current problem and development prospect of SRFs/CRFsboth at home and abroad were reviewed. The production principles and processes of urea- formaldehyde slow release fertilizers were introduced; and It is suggested that the urea-formaldehyde slow release fertilizers show great development to ease energy and environment pressure.展开更多
[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyl...[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyllus)as research object,the application effect and environmental protection effect of slow release fertilizer on carnation were discussed through field plot test.[Result] The main agronomic characters of carnation improved after the application of slow release fertilizer;compared with Conv-F treatment,the yield of carnation with slow release fertilizer increased by 18.67%-20.83%,and its economic benefit increased by 105 500 yuan/hm2,while the ratio of output to input improved by 74.29%;under the same NPK ratio and nutrient amount,the yield,economic benefit and ratio of output to input of carnation after the application of slow release fertilizer increased by 2.11%,14 800 yuan and 16.2%,respectively;besides,the application of slow release fertilizer improved the nutrient use efficiency of carnation,and N,P and K nutrient use efficiency in Opt-F-0.7% treatment increased by 13.88%,8.57% and 30.14% compared with Conv-F treatment.[Conclusion] Slow release fertilizer could not only reduce the waste of fertilizer resources and improve fertilizer use efficiency but also decrease the pollution caused by nutrient loss,which had important practical significance for protecting ecological environment and promoting the sustainable development of agriculture.展开更多
[Objective] A new-type water-absorbent slow release nitrogen fertilizer(WASRNF) was produced through polymerization reaction. Its physicochemical property and application effect in latosol were studied. Feasibility ...[Objective] A new-type water-absorbent slow release nitrogen fertilizer(WASRNF) was produced through polymerization reaction. Its physicochemical property and application effect in latosol were studied. Feasibility of using WASRNF to improve the serious problems of latosol in rubber planting area in Hainan Island including vulnerable nutrient, free-running fertilizer and water was studied. [Result] The results showed that raw materials of WASRNF, urea and water-retention material formed co-polymer through hydrogen-bond interaction that the WASRNF contained many hydrophilic groups. The p H value of WASRNF is near neutral and its water absorbent rate in tap water could reach 167.17 g·g-1. The water absorbent rates in latosol leach liquors with water/soil ratios of 1:5, 1:10 and 1:20 were 104.66, 122.93 and 145.38 g·g^-1, respectively. The maximum water holding ratio of latosol increased by 23.72%, 30.89% and 39.68% when 0.5%, 1% and 2% WASRNFs were added to latosol, and water evaporation rate of latosol decreased efficiently. Compared with common urea, WASRNF could slow down the leaching rate of nitrogen and the initial leaching amount was only 22.17% of the total amount. [Conclusion]The results indicated that WASRNF in latosol had strong water absorption and water-retention abilities in addition to the good slow release effect, and could efficiently decrease nutrient loss, increase utilization ratio of water and fertilizer and promote interaction between water and fertilizer.展开更多
There is limited information about the influence of slow or controlled release fertilizer(S/CRF) on rice yield and quality. In this study, japonica rice cultivar Nanjing 9108 was used to study the effects of three d...There is limited information about the influence of slow or controlled release fertilizer(S/CRF) on rice yield and quality. In this study, japonica rice cultivar Nanjing 9108 was used to study the effects of three different S/CRFs(polymer-coated urea(PCU), sulfur-coated urea(SCU), and urea formaldehyde(UF)) and two fertilization modes(both S/CRF and common urea(CU) as basal fertilizer, S/CRF as basal and CU as tillering fertilizer) on rice yield and quality. CU only was applied separately as control(CK). Results showed that, rice grain yield, chalky kernel rate, chalky area, overall chalkiness, and the content of gliadin, glutenin, and protein, all showed the trends of UF〉PCU〉SCU within the same fertilization mode, and showed the trends of S/CRF as basal and CU as tillering fertilizer〉both S/CRF and CU as basal fertilizer within the same type of S/CRF. In contrast, the contents of amylose, amylopectin, and starch, as well as taste value, and peak and hot viscosity showed trends of SCU〉PCU〉UF, and the trends of both S/CRF and CU as basal fertilizer〉S/CRF as basal and CU as tillering fertilizer. Among S/CRF treatments and fertilization modes, taste values of cooked rice were positively correlated with amylose, amylopectin, and starch contents, as well as gel consistency, peak viscosity, hot viscosity, and cool viscosity, while negatively correlated with globulin, gliadin, glutenin, and protein contents. The types of S/CRF and fertilization modes are important for improving rice yield and quality. Compared to CK, higher yield and similar quality of rice was achieved with UF as basal and CU as tillering fertilizer, and similar yield with improved appearance and eating and cooking quality of rice was achieved with either both UF and CU as basal fertilizer, or PCU as basal and CU as tillering fertilizer.展开更多
In this article, a research on the characteristics and performance of water-absorbent slow release nitrogen fertilizer (WASRNF) using infrared spectroscopy (IR), scanning electronic microscopy (SEM), differentia...In this article, a research on the characteristics and performance of water-absorbent slow release nitrogen fertilizer (WASRNF) using infrared spectroscopy (IR), scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetry analysis (TGA), was present. The results indicate that the water absorbency and nitrogen analysis of WASRNF is 103 g g^-1 and 30%, respectively, and WASRNF exhibits approximately neutral pH and very low salt index. WASRNF is a copolymer of nitrogen fertilizer and super absorbent polymer (SAP) monomers which is formed through hydrogen bond interaction, and the molecule contains hydrophilic groups, which is responsible for the absorption and water retention capacity of the molecule. WASRNF is a gel that exhibits the ability to swell, but does not dissolve in water. WASRNF shows non-homogenous nature as a whole, but in local zone it is homogenous, the copolymer molecule shows chain network that is the physical structure responsible for absorption and retention of water in WASRNF. The water retained in WASRNF exists as free and nonfreezing bound and freezing bound water states, with the free and the nonfreezing water accounting for more than 95% of water retained in WASRNF, and the nonfreezing bound water for less than 5%. WASRNF functions in delaying the release of nitrogen from it, thereby serving a novel slow release nitrogenous fertilizer.展开更多
This study examined the release characteristics of different N forms in an uncoated slow/controlled-release compound fertilizer (UCRF) and the N uptake and N-use efficiency by rice plants. Water dissolution, soil le...This study examined the release characteristics of different N forms in an uncoated slow/controlled-release compound fertilizer (UCRF) and the N uptake and N-use efficiency by rice plants. Water dissolution, soil leaching, and pot experiments were employed. The dynamics of N release from the UCRF could be quantitatively described by three equations: the first-order kinetics equation [N1=N0 (1-e^-kt)], Elovich equation (N1=a + blnt), and parabola equation (N1=a + bt^0.5), with the best fitting by the first-order kinetics equation for different N (r= 0.9569^**-0.9999^**). The release potentials (No values estimated by the first-order kinetics equation) of different N in the UCRF decreased in the order of total N 〉 DON 〉 urea-N 〉 NH4^+-N 〉 NO3^-N in water, and total N 〉 NH4^+-N 〉 DON 〉 urea-N 〉 NO3^--N in soil, respectively, being in accordance with cumulative amounts of N release. The constants of N release rate (k values and b values) for different N forms were in decreasing order of total N 〉 DON 〉 NH4^+-N 〉 NO3^--N in water, whereas the k values were urea- N 〉DON 〉 NH4^+-N 〉 total N 〉 NO3^--N, and the b values were total N 〉 NH4^+-N 〉 DON 〉 NO3^--N 〉 urea-N in soil. Compared with a common compound fertilizer, the N-use efficiency, N-agronomy efficiency, and N-physiological efficiency of the UCRF were increased by 11.4%, 8.32 kg kg^-1, and 5.17 kg kg^-1, respectively. The ratios of different N to total N in the UCRF showed significant correlation with N uptake by rice plants. The findings showed that the first-order kinetics equation [Nt=N0 (l-e^kt)] could be used to describe the release characteristics of different N forms in the fertilizer. The UCRF containing different N forms was more effective in facilitating N uptake by rice compared with the common compound fertilizer containing single urea-N form.展开更多
Polyurethane coated urea slow/controlled release fertilizer was prepared based on urea granules, isocyanate, polyols and paraffin. Isocyanate reacted with polyols to synthesize the polyurethane skin layer on urea gran...Polyurethane coated urea slow/controlled release fertilizer was prepared based on urea granules, isocyanate, polyols and paraffin. Isocyanate reacted with polyols to synthesize the polyurethane skin layer on urea granules surface. Paraffin serves as a lubricant during syntheses of polyurethane skin layers. The structure and nutrient release characteristics of the polyurethane skin layers were investigated by FTIR, SEM and TG. Urea nitrogen slow-release behavior of the polyurethane coated urea was tested. The experimental results indicated that compact and dense polyurethane skin layers with a thickness of 10-15 lam were formed on urea surface, the urea nitrogen slow-release time can reach 40-50 days. Paraffin proves to play a key role in inhibiting water to penetrate into urea, but excessive addition would decrease the polyurethane crosslinking density.展开更多
Excessive or insufficient application of fertilizer has raised broader concerns regarding soil and environmental degradation.One-time application of slow release fertilizer (SF) has been widely used to reduce yield ga...Excessive or insufficient application of fertilizer has raised broader concerns regarding soil and environmental degradation.One-time application of slow release fertilizer (SF) has been widely used to reduce yield gap with potential maize yield and improve nitrogen use efficiency (NUE).A 2-year field experiment (2018–2019) was conducted to evaluate the effects of SF rates from 0 to 405 kg N ha^(–1) (named F0,SF225,SF270,SF315,SF360,and SF405) and 405 kg N ha^(–1) of common fertilizer(CF405) on the grain yield,biomass and N accumulation,enzymatic activities related with carbon–nitrogen metabolism,NUE and economic analysis.Results indicated that the highest grain yields,NUEs and economic returns were achieved at SF360in both varieties.The enzymatic activities related with carbon–nitrogen metabolism,pre-and post-silking accumulation of biomass and N increased with increasing SF rate,and they were the highest at SF360 and SF405.The grain yield at SF360had no significant difference with that at SF405.However,the N partial factor productivity,N agronomic efficiency and N recovery efficiency at SF360 were 9.8,6.6 and 8.9% higher than that at SF405.The results also indicated that the average grain yields,NUE and economic benefit at SF405 were 5.2,12.3 and 18.1% higher than that at CF405.In conclusion,decreasing N rate from 405 kg ha^(–1)(CF) to 360 kg ha^(–1)(SF) could effectively reduce the yield gap between realized and potential maize yields.The N decreased by 11.1%,but the yield,NUE and economic benefit increased by 3.2,22.2 and 17.5%,which created a simple,efficient and business-friendly system for spring maize production in Jiangsu Province,China.展开更多
Functional porous microspheres used for the slow release carrier of actives in cosmetics or pharmaceuticals were prepared by modified suspension polymerization of styrene (ST) with divinylbenzene (DVB) in the pres...Functional porous microspheres used for the slow release carrier of actives in cosmetics or pharmaceuticals were prepared by modified suspension polymerization of styrene (ST) with divinylbenzene (DVB) in the presence of toluene, cyclohexanol and heptane as porogenic diluents. The use of ultrasonic dispersion decreases the beads' size and improves the uniformity. The effects of the porogen mixture, DVB content and solvent extraction on the surface performance of the synthesized beads were studied. The microspheres were characterized by scanning electron microscopy (SEM) and BET surface area determination. It was found that a great proportion of the non-solvating porogen increases the pore diameter and the specific surface area. High DVB concentration also results in the great specific surface area and porosity. When the ratio of toluene/cyclohexanol is 1:2, DVB content is at the range of 40%-60% and methylene chloride was used as extractant, the beads with good spherical shape and pore size were obtained. The prepared porous microspheres were applied as active carriers and showed satisfactory slow release effect. Over 10h constantly sustained release was observed in vitro releasing test for hydroquinone-loaded microspheres. Great surface area promoted high concentration of released hydroquinone.展开更多
An attempt on starch modification has been made to increase the paste concentration of potato starch for reducing the energy consumption required for the encapsulation of herbicide within starch matrix by encapsulatin...An attempt on starch modification has been made to increase the paste concentration of potato starch for reducing the energy consumption required for the encapsulation of herbicide within starch matrix by encapsulating 2, 4-D as model herbicide. The matrix behaviors were evaluated in terms of the herbicide content, capability of swelling in water, encapsulation efficiency, and the rate of herbicide released from the matrix. To increase paste concentration of starch for decreasing the energy consumption in dry process, potato starch was acidified before the encapsulation. However, the matrix prepared in such a way showed that it weakened the control to the herbicide encapsulated, which increased the rate of herbicide released from the matrix. By introducing covalent bonds among starch molecules, the problem with the control and release rate can be completely solved. Moreover, the effects of formaldehyde amount, medium pH, herbicide content, and particle size on the matrix behaviors and release rate were also investigated. The newly developed matrix shows low capability of swelling and slow release, and reduces water evaporation in dry process by about 40% during matrix preparation.展开更多
Fertilizer issues such as overuse, leaching and soil degradation are becoming severe?in?worldwide plantation areas. To secure current food production, prevention measures on these issues are relatively limited on agri...Fertilizer issues such as overuse, leaching and soil degradation are becoming severe?in?worldwide plantation areas. To secure current food production, prevention measures on these issues are relatively limited on agricultural production areas. Slow release fertilizer is prevailing over past years due to its significant effects on prevention of fertilizer leaching and less harm to soil and underground water. We presented here the mechanisms of a novel zeolite-based slow release fertilizer including its properties as reservoirs of nutrients, pH balancer and also water retainer in soil. By providing sufficient nutrients to soil, this fertilizer has commercially proven to give better growing environment to grower as well as labor saving and cost saving.展开更多
Lignin is the main by-product of pulp and papermaking and is not effectively utilized. Conversion of industrial lignins into value-added materials is beneficial for the effective utilization of resources as well as fo...Lignin is the main by-product of pulp and papermaking and is not effectively utilized. Conversion of industrial lignins into value-added materials is beneficial for the effective utilization of resources as well as for environmental protection. Because of their adsorptivity, slow-release property,biocompatibility, and biodegradability, lignin and its derivatives find potential applications as eco-friendly slow/controlled release materials in agricultural fields. This report reviews the recent research advances in lignin-based slow/controlled release fertilizers and pesticides.展开更多
The effects of slow-release fertilizers and sugarcane-specific fertilizers on the growth and quality of sugarcane were studied to provide a theoretical basis for cultivation of sugarcane with lower costs but higher ef...The effects of slow-release fertilizers and sugarcane-specific fertilizers on the growth and quality of sugarcane were studied to provide a theoretical basis for cultivation of sugarcane with lower costs but higher efficiency. Field experiments were carried out in two major sugarcane areas in Guangxi and three fertilization treatments were studied: single application of compound fertilizers( treatment I),compound fertilizers + slow-release fertilizers( treatment II) and sugarcane-specific base fertilizers + sugarcane-specific topdressing( treatment III). Effects of equal fertilization conditions of treatment I,II and III on growth,yield and sugar of sugarcane were studied. The three fertilization treatments had little effects on emergence,tillering,and effective stems of sugarcane,but compared with the treatment of compound fertilizer( treatment I) with a ratio of N,P,and K of 1∶1∶1,treatment II using slow-release fertilizers as topdressing had better growth,higher plant height and stem diameter,so the yield was higher. Treatment III designed sugarcane-specific fertilizers with proper ratio according to fertilizer demands of sugarcane. Besides,the treatment III sugarcane-specific base fertilizers,containing certain amount of organic matters,could promote the sugar accumulation of sugarcane. Therefore,the sugarcane yield of treatment III was higher than that of treatment II. In conclusion,slow-release fertilizers and sugarcane-specific fertilizers can significantly increase sugarcane yield,especially sugarcane-specific fertilizers. Sugarcane-specific fertilizers have reasonable ratio and contain certain amount of organic matters,and can increase sugar content,obtain significant economic benefits,so it is worth popularization in large areas.展开更多
Iron deficiency chlorosis of Lilium davidii var. unicolor is often the case in practice in alkaline soils of northwest region of China. It is difficult to control iron chlorosis because of high cost and short effectiv...Iron deficiency chlorosis of Lilium davidii var. unicolor is often the case in practice in alkaline soils of northwest region of China. It is difficult to control iron chlorosis because of high cost and short effective work time of conventional iron fertilizers. In this study, a 2-year field experiment was conducted to evaluate the effects of two slow-release fertilizers on the suppression of iron deficiency chlorosis, soil chemical properties, and the yield and quality of L. davidii var. unicolor. Results show that both coated slow-release iron fertilizers and embedded slow-release iron fertilizer effectively controlled iron-deficiency chlorosis. The application of slow-release iron fertilizers significantly increased plant height and chlorophyll content of L. davidii var. unicolor at different growth stages. Furthermore, coated iron fertilizer application significantly increased starch, protein, soluble sugar and vitamin C content of L. davidii var. unicolor, and it also significantly improved total amino acid content, with increases in essential amino acids(Trp, Leu, Lys, Phe, Val, and Thr contents) and in nonessential amino acids(Asp, Glu, Cit, Ihs, Acc, Ala, Pro, and Cys contents). It was concluded that application of coated slow-release iron fertilizer could be a promising option for suppression of iron deficiency chlorosis and deserves further study.展开更多
Functional porous microspheres used for the slow release carrier of actives in cosmetics or pharmaceu- ticals were prepared by modified suspension polymerization of styrene (ST) with divinylbenzene (DVB) in the presen...Functional porous microspheres used for the slow release carrier of actives in cosmetics or pharmaceu- ticals were prepared by modified suspension polymerization of styrene (ST) with divinylbenzene (DVB) in the presence of toluene, cyclohexanol and heptane as porogenic diluents. The use of ultrasonic dispersion decreases the beads’ size and improves the uniformity. The effects of the porogen mixture, DVB content and solvent extraction on the surface performance of the synthesized beads were studied. The microspheres were characterized by scanning electron microscopy (SEM) and BET surface area determination. It was found that a great proportion of the non-solvating porogen increases the pore diameter and the specific surface area. High DVB concentration also re- sults in the great specific surface area and porosity. When the ratio of toluene/cyclohexanol is 1:2, DVB content is at the range of 40%—60% and methylene chloride was used as extractant, the beads with good spherical shape and pore size were obtained. The prepared porous microspheres were applied as active carriers and showed satisfactory slow release effect. Over 10h constantly sustained release was observed in vitro releasing test for hydro- quinone-loaded microspheres. Great surface area promoted high concentration of released hydroquinone.展开更多
Slow-release non-protein nitrogen feed has a large market demand. It has a long research history, but its production technology needs further improvement in order to realize the industrial production of slow-release n...Slow-release non-protein nitrogen feed has a large market demand. It has a long research history, but its production technology needs further improvement in order to realize the industrial production of slow-release non-protein nitrogen extruded feed. By designing the best formula and using chelating and emulsifying process, the slow-release non-protein nitrogen extruded feed additives were produced. This product increases milk yield and improves milk quality, thus increasing economic efficiency.展开更多
In order to select the long-acting,low toxic,low-risk and multi-functional new pesticides for the control of sugarcane borders and woolly aphids and precise and efficient application technology,the control effect of 1...In order to select the long-acting,low toxic,low-risk and multi-functional new pesticides for the control of sugarcane borders and woolly aphids and precise and efficient application technology,the control effect of 10% monosultap · thiamethoxam granular formulation and 1% Bt · clothianidin granular formulation on sugarcane borders and woolly aphids were studied.The results showed that 10% monosultap·thiamethoxam GR and 1% Bt·clothianidin GR had good control effects on sugarcane borders and woolly aphids.They were ideal slow-release,long-acting,low toxic and multi-functional new pesticides used to control sugarcane borders and woolly aphids.They could be used alternately with other pesticides to delay the emergence and development of pest resistance to pesticides.The best dosage of the two pesticides in the field was 45 kg/hm^2.They could be mixed with fertilizer( 1200-1800 kg/hm^2),scattered in sugarcane ditches or at the base of sugarcane plants,and covered with soil or film from January to July.The control effect on dead heart seedlings damaged by borers could be up to above 79.2%,and the control effect on sugarcane woolly aphids could reach more than 98.8%.In comparison with the control group,the actual yield and sugar content of sugarcane increased by above 41 555 kg/hm^2 and 6.5% respectively.The application of slow-release,long-acting,strong systemic and multi-functional new agents with fertilizer around roots is convenient,precise and efficient,labor-saving,time-saving and environmentally friendly,and is worthy of being widely applied in sugarcane areas.展开更多
[Objective] The paper was to study the slow release effects of eight common kinds of slow release solvents on n-hexane, and to provide a reference for the construction of slow release system of attractants or repellen...[Objective] The paper was to study the slow release effects of eight common kinds of slow release solvents on n-hexane, and to provide a reference for the construction of slow release system of attractants or repellents synthesized by plant volatiles. [Method] The effect of slow release solvents on volatile quantity and release rate of n-hexane was compared by weight loss method. [Result] Under indoor natural conditions [(22±2) ℃,RH 50%±10%], the slow release effect of lubricating oil on n-hexane was the best, followed by liquid paraffin. The best ratio of slow release solvent(lubricating oil and liquid paraffin) and n-hexane was 5∶1 and the best mixing time was 3 h, which improved the slow release effects of n-hexane by6.3 and 4.7 times, and prolonged the half-life of n-hexane by 1.3 and 1.0 times, respectively. Slow release solvents mainly affected the post-half-life period of n-hexane, and the release rates of n-hexane mixed with lubricating oil and liquid paraffin were decreased by 10.4 and 7.7 times, respec-tively. During the half-life period, the release rates of n-hexane were decreased by 1.3 and 1.0 times, respectively. [Conclusion] Two kinds of slow release solvents with good slow release effect on volatile n-hexane are screened out, and the proportion and mixing time of slow release solvent and volatile are determined, which will provide technical support for the construction of plant volatile slow release system.展开更多
The fertiliser industry faces a continuing challenge to improve the efficiency of their products,particularly of nitrogenous fertilisers,and to minimise adverse impacts.Therefore,a new slow release fertilizer,ureaimpr...The fertiliser industry faces a continuing challenge to improve the efficiency of their products,particularly of nitrogenous fertilisers,and to minimise adverse impacts.Therefore,a new slow release fertilizer,ureaimpregnated woodchips from tropical plant biomass(oil palm frond and rubberwood),was developed.The morphology of the impregnated woodchips was investigated by scanning electron microscopy and the success of impregnation of urea and nitrogen deposition into the woodchips was confirmed by energy dispersive X-ray spectrometry.When nitrogen release patterns from impregnated woodchips fertiliser were simulated using a soil solution and distilled water as leaching solutions in a static condition for 768 h,release was slow and steady,although the release rate was lower in distilled water than in the soil solution.展开更多
基金Supported by Special Fund for Agro-scientific Research in the Public Interest from Ministry of Agriculture(200903025-05)Fund from Kunming Municipal Science and Technology Committee(08S010201)~~
文摘[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei hot pepper(Capsicum frutescens L.)as the experimental material,we studied the fertilization effect and environment-protecting effect of SCRF.[Result] The result showed that SCRF could improve the agronomic characteristics of hot pepper.Compared to singly applied common fertilizers,SCRF increased economic yield by 20.90% and economic benefit by 13 234.35 Yuan/hm2,and the ratio of output to input was improved by 47.93%.In comparison with common straight fertilizers at same NPK proportion and rate,SCRF increased economic yield by 5.26% and economic benefit by 5 554.80 Yuan/hm2,and the ratio of output to input was improved by 9.91%.Under the reduced use of SCRF by 20%,SCRF increased economic yield by 12.38% and economic benefit by 9595.20 Yuan/hm2 compared with singly applied common fertilizers,and the ratio of output to input was improved by 65.95%.SCRF improved nitrogen,phosphorus and potassium use efficiencies by 12.42-17.53,3.35-5.24 and 5.37-14.02 percents respectively.[Conclusion] As the result of much reduced N and P application rates,SCRF would significantly economize fertilizer resources and minimize the pollution caused by the loss of fertilizer nutrients,which is of practical importance for environment protection.
基金Supported by the Special Fund for Construction of National Tea Industry Technology System(CARS-23)Funding Project of Hubei Agricultural Science and Technology Innovation Center(2011-620-005-003-04)~~
文摘Slow/controlled release fertilizers (SRFs/CRFs) have been paid more at- tentions by the researchersin recent years. In this paper, the application effects and methods, types, current problem and development prospect of SRFs/CRFsboth at home and abroad were reviewed. The production principles and processes of urea- formaldehyde slow release fertilizers were introduced; and It is suggested that the urea-formaldehyde slow release fertilizers show great development to ease energy and environment pressure.
基金Supported by National Key Technology R&D Program(2006BAD05B06-04)Kunming Science and Technology Program(08S010201)~~
文摘[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyllus)as research object,the application effect and environmental protection effect of slow release fertilizer on carnation were discussed through field plot test.[Result] The main agronomic characters of carnation improved after the application of slow release fertilizer;compared with Conv-F treatment,the yield of carnation with slow release fertilizer increased by 18.67%-20.83%,and its economic benefit increased by 105 500 yuan/hm2,while the ratio of output to input improved by 74.29%;under the same NPK ratio and nutrient amount,the yield,economic benefit and ratio of output to input of carnation after the application of slow release fertilizer increased by 2.11%,14 800 yuan and 16.2%,respectively;besides,the application of slow release fertilizer improved the nutrient use efficiency of carnation,and N,P and K nutrient use efficiency in Opt-F-0.7% treatment increased by 13.88%,8.57% and 30.14% compared with Conv-F treatment.[Conclusion] Slow release fertilizer could not only reduce the waste of fertilizer resources and improve fertilizer use efficiency but also decrease the pollution caused by nutrient loss,which had important practical significance for protecting ecological environment and promoting the sustainable development of agriculture.
基金Supported by Basal Research Fund of Rubber Research Institute of CATAS:"Development and Application of New Type Fertilizers for Rubber Tree"(No.1630022012003)"Special Funds of China Agriculture Reserach Systems"(No.CARS-34)~~
文摘[Objective] A new-type water-absorbent slow release nitrogen fertilizer(WASRNF) was produced through polymerization reaction. Its physicochemical property and application effect in latosol were studied. Feasibility of using WASRNF to improve the serious problems of latosol in rubber planting area in Hainan Island including vulnerable nutrient, free-running fertilizer and water was studied. [Result] The results showed that raw materials of WASRNF, urea and water-retention material formed co-polymer through hydrogen-bond interaction that the WASRNF contained many hydrophilic groups. The p H value of WASRNF is near neutral and its water absorbent rate in tap water could reach 167.17 g·g-1. The water absorbent rates in latosol leach liquors with water/soil ratios of 1:5, 1:10 and 1:20 were 104.66, 122.93 and 145.38 g·g^-1, respectively. The maximum water holding ratio of latosol increased by 23.72%, 30.89% and 39.68% when 0.5%, 1% and 2% WASRNFs were added to latosol, and water evaporation rate of latosol decreased efficiently. Compared with common urea, WASRNF could slow down the leaching rate of nitrogen and the initial leaching amount was only 22.17% of the total amount. [Conclusion]The results indicated that WASRNF in latosol had strong water absorption and water-retention abilities in addition to the good slow release effect, and could efficiently decrease nutrient loss, increase utilization ratio of water and fertilizer and promote interaction between water and fertilizer.
基金the National Key R&D Program of China (2016YFD0300503)the Key Research Program of Jiangsu Province, China (BE2016344)+3 种基金the National Rice Industry Technology System, China (CARS01-27)the National Nature Science Foundation of China (31701350)the Program for Scientific Elitists of Yangzhou University, Chinaa Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘There is limited information about the influence of slow or controlled release fertilizer(S/CRF) on rice yield and quality. In this study, japonica rice cultivar Nanjing 9108 was used to study the effects of three different S/CRFs(polymer-coated urea(PCU), sulfur-coated urea(SCU), and urea formaldehyde(UF)) and two fertilization modes(both S/CRF and common urea(CU) as basal fertilizer, S/CRF as basal and CU as tillering fertilizer) on rice yield and quality. CU only was applied separately as control(CK). Results showed that, rice grain yield, chalky kernel rate, chalky area, overall chalkiness, and the content of gliadin, glutenin, and protein, all showed the trends of UF〉PCU〉SCU within the same fertilization mode, and showed the trends of S/CRF as basal and CU as tillering fertilizer〉both S/CRF and CU as basal fertilizer within the same type of S/CRF. In contrast, the contents of amylose, amylopectin, and starch, as well as taste value, and peak and hot viscosity showed trends of SCU〉PCU〉UF, and the trends of both S/CRF and CU as basal fertilizer〉S/CRF as basal and CU as tillering fertilizer. Among S/CRF treatments and fertilization modes, taste values of cooked rice were positively correlated with amylose, amylopectin, and starch contents, as well as gel consistency, peak viscosity, hot viscosity, and cool viscosity, while negatively correlated with globulin, gliadin, glutenin, and protein contents. The types of S/CRF and fertilization modes are important for improving rice yield and quality. Compared to CK, higher yield and similar quality of rice was achieved with UF as basal and CU as tillering fertilizer, and similar yield with improved appearance and eating and cooking quality of rice was achieved with either both UF and CU as basal fertilizer, or PCU as basal and CU as tillering fertilizer.
文摘In this article, a research on the characteristics and performance of water-absorbent slow release nitrogen fertilizer (WASRNF) using infrared spectroscopy (IR), scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetry analysis (TGA), was present. The results indicate that the water absorbency and nitrogen analysis of WASRNF is 103 g g^-1 and 30%, respectively, and WASRNF exhibits approximately neutral pH and very low salt index. WASRNF is a copolymer of nitrogen fertilizer and super absorbent polymer (SAP) monomers which is formed through hydrogen bond interaction, and the molecule contains hydrophilic groups, which is responsible for the absorption and water retention capacity of the molecule. WASRNF is a gel that exhibits the ability to swell, but does not dissolve in water. WASRNF shows non-homogenous nature as a whole, but in local zone it is homogenous, the copolymer molecule shows chain network that is the physical structure responsible for absorption and retention of water in WASRNF. The water retained in WASRNF exists as free and nonfreezing bound and freezing bound water states, with the free and the nonfreezing water accounting for more than 95% of water retained in WASRNF, and the nonfreezing bound water for less than 5%. WASRNF functions in delaying the release of nitrogen from it, thereby serving a novel slow release nitrogenous fertilizer.
文摘This study examined the release characteristics of different N forms in an uncoated slow/controlled-release compound fertilizer (UCRF) and the N uptake and N-use efficiency by rice plants. Water dissolution, soil leaching, and pot experiments were employed. The dynamics of N release from the UCRF could be quantitatively described by three equations: the first-order kinetics equation [N1=N0 (1-e^-kt)], Elovich equation (N1=a + blnt), and parabola equation (N1=a + bt^0.5), with the best fitting by the first-order kinetics equation for different N (r= 0.9569^**-0.9999^**). The release potentials (No values estimated by the first-order kinetics equation) of different N in the UCRF decreased in the order of total N 〉 DON 〉 urea-N 〉 NH4^+-N 〉 NO3^-N in water, and total N 〉 NH4^+-N 〉 DON 〉 urea-N 〉 NO3^--N in soil, respectively, being in accordance with cumulative amounts of N release. The constants of N release rate (k values and b values) for different N forms were in decreasing order of total N 〉 DON 〉 NH4^+-N 〉 NO3^--N in water, whereas the k values were urea- N 〉DON 〉 NH4^+-N 〉 total N 〉 NO3^--N, and the b values were total N 〉 NH4^+-N 〉 DON 〉 NO3^--N 〉 urea-N in soil. Compared with a common compound fertilizer, the N-use efficiency, N-agronomy efficiency, and N-physiological efficiency of the UCRF were increased by 11.4%, 8.32 kg kg^-1, and 5.17 kg kg^-1, respectively. The ratios of different N to total N in the UCRF showed significant correlation with N uptake by rice plants. The findings showed that the first-order kinetics equation [Nt=N0 (l-e^kt)] could be used to describe the release characteristics of different N forms in the fertilizer. The UCRF containing different N forms was more effective in facilitating N uptake by rice compared with the common compound fertilizer containing single urea-N form.
基金the National Key Technology R&D Program of the 11th Five-Year Period (No.2006BAD10B08)
文摘Polyurethane coated urea slow/controlled release fertilizer was prepared based on urea granules, isocyanate, polyols and paraffin. Isocyanate reacted with polyols to synthesize the polyurethane skin layer on urea granules surface. Paraffin serves as a lubricant during syntheses of polyurethane skin layers. The structure and nutrient release characteristics of the polyurethane skin layers were investigated by FTIR, SEM and TG. Urea nitrogen slow-release behavior of the polyurethane coated urea was tested. The experimental results indicated that compact and dense polyurethane skin layers with a thickness of 10-15 lam were formed on urea surface, the urea nitrogen slow-release time can reach 40-50 days. Paraffin proves to play a key role in inhibiting water to penetrate into urea, but excessive addition would decrease the polyurethane crosslinking density.
基金financial support from the National Key Research and Development Program of China(2016YFD0300109)the National Natural Science Foundation of China(31771709)+2 种基金the Jiangsu Agricultural Industry Technology System of China(JATS[2019]458)the High-end Talent Support Program of Yangzhou University,Chinathe Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘Excessive or insufficient application of fertilizer has raised broader concerns regarding soil and environmental degradation.One-time application of slow release fertilizer (SF) has been widely used to reduce yield gap with potential maize yield and improve nitrogen use efficiency (NUE).A 2-year field experiment (2018–2019) was conducted to evaluate the effects of SF rates from 0 to 405 kg N ha^(–1) (named F0,SF225,SF270,SF315,SF360,and SF405) and 405 kg N ha^(–1) of common fertilizer(CF405) on the grain yield,biomass and N accumulation,enzymatic activities related with carbon–nitrogen metabolism,NUE and economic analysis.Results indicated that the highest grain yields,NUEs and economic returns were achieved at SF360in both varieties.The enzymatic activities related with carbon–nitrogen metabolism,pre-and post-silking accumulation of biomass and N increased with increasing SF rate,and they were the highest at SF360 and SF405.The grain yield at SF360had no significant difference with that at SF405.However,the N partial factor productivity,N agronomic efficiency and N recovery efficiency at SF360 were 9.8,6.6 and 8.9% higher than that at SF405.The results also indicated that the average grain yields,NUE and economic benefit at SF405 were 5.2,12.3 and 18.1% higher than that at CF405.In conclusion,decreasing N rate from 405 kg ha^(–1)(CF) to 360 kg ha^(–1)(SF) could effectively reduce the yield gap between realized and potential maize yields.The N decreased by 11.1%,but the yield,NUE and economic benefit increased by 3.2,22.2 and 17.5%,which created a simple,efficient and business-friendly system for spring maize production in Jiangsu Province,China.
基金Natural Science Foundation of Guangdong Province (No.05006556).
文摘Functional porous microspheres used for the slow release carrier of actives in cosmetics or pharmaceuticals were prepared by modified suspension polymerization of styrene (ST) with divinylbenzene (DVB) in the presence of toluene, cyclohexanol and heptane as porogenic diluents. The use of ultrasonic dispersion decreases the beads' size and improves the uniformity. The effects of the porogen mixture, DVB content and solvent extraction on the surface performance of the synthesized beads were studied. The microspheres were characterized by scanning electron microscopy (SEM) and BET surface area determination. It was found that a great proportion of the non-solvating porogen increases the pore diameter and the specific surface area. High DVB concentration also results in the great specific surface area and porosity. When the ratio of toluene/cyclohexanol is 1:2, DVB content is at the range of 40%-60% and methylene chloride was used as extractant, the beads with good spherical shape and pore size were obtained. The prepared porous microspheres were applied as active carriers and showed satisfactory slow release effect. Over 10h constantly sustained release was observed in vitro releasing test for hydroquinone-loaded microspheres. Great surface area promoted high concentration of released hydroquinone.
基金Supported by the National High-Technology Development Program of China (2002AA327120)
文摘An attempt on starch modification has been made to increase the paste concentration of potato starch for reducing the energy consumption required for the encapsulation of herbicide within starch matrix by encapsulating 2, 4-D as model herbicide. The matrix behaviors were evaluated in terms of the herbicide content, capability of swelling in water, encapsulation efficiency, and the rate of herbicide released from the matrix. To increase paste concentration of starch for decreasing the energy consumption in dry process, potato starch was acidified before the encapsulation. However, the matrix prepared in such a way showed that it weakened the control to the herbicide encapsulated, which increased the rate of herbicide released from the matrix. By introducing covalent bonds among starch molecules, the problem with the control and release rate can be completely solved. Moreover, the effects of formaldehyde amount, medium pH, herbicide content, and particle size on the matrix behaviors and release rate were also investigated. The newly developed matrix shows low capability of swelling and slow release, and reduces water evaporation in dry process by about 40% during matrix preparation.
文摘Fertilizer issues such as overuse, leaching and soil degradation are becoming severe?in?worldwide plantation areas. To secure current food production, prevention measures on these issues are relatively limited on agricultural production areas. Slow release fertilizer is prevailing over past years due to its significant effects on prevention of fertilizer leaching and less harm to soil and underground water. We presented here the mechanisms of a novel zeolite-based slow release fertilizer including its properties as reservoirs of nutrients, pH balancer and also water retainer in soil. By providing sufficient nutrients to soil, this fertilizer has commercially proven to give better growing environment to grower as well as labor saving and cost saving.
基金financial support from the Independent Innovation and Achievements Transformation Project of Shandong Province (2014CGZH0302)
文摘Lignin is the main by-product of pulp and papermaking and is not effectively utilized. Conversion of industrial lignins into value-added materials is beneficial for the effective utilization of resources as well as for environmental protection. Because of their adsorptivity, slow-release property,biocompatibility, and biodegradability, lignin and its derivatives find potential applications as eco-friendly slow/controlled release materials in agricultural fields. This report reviews the recent research advances in lignin-based slow/controlled release fertilizers and pesticides.
基金Supported by Special Project for Construction of Modern Agricultural Industrial Technology System(CARS-20-3-5)Scientific Research and Technological Development Program Project of Guangxi(Gui Ke Neng 14121007-1-5)+1 种基金Natural Science Foundation Project of Guangxi(Gui Ke Zi 0991203)Scientific Development Fund Project of Guangxi Academy of Agricultural Sciences(2015JM23)
文摘The effects of slow-release fertilizers and sugarcane-specific fertilizers on the growth and quality of sugarcane were studied to provide a theoretical basis for cultivation of sugarcane with lower costs but higher efficiency. Field experiments were carried out in two major sugarcane areas in Guangxi and three fertilization treatments were studied: single application of compound fertilizers( treatment I),compound fertilizers + slow-release fertilizers( treatment II) and sugarcane-specific base fertilizers + sugarcane-specific topdressing( treatment III). Effects of equal fertilization conditions of treatment I,II and III on growth,yield and sugar of sugarcane were studied. The three fertilization treatments had little effects on emergence,tillering,and effective stems of sugarcane,but compared with the treatment of compound fertilizer( treatment I) with a ratio of N,P,and K of 1∶1∶1,treatment II using slow-release fertilizers as topdressing had better growth,higher plant height and stem diameter,so the yield was higher. Treatment III designed sugarcane-specific fertilizers with proper ratio according to fertilizer demands of sugarcane. Besides,the treatment III sugarcane-specific base fertilizers,containing certain amount of organic matters,could promote the sugar accumulation of sugarcane. Therefore,the sugarcane yield of treatment III was higher than that of treatment II. In conclusion,slow-release fertilizers and sugarcane-specific fertilizers can significantly increase sugarcane yield,especially sugarcane-specific fertilizers. Sugarcane-specific fertilizers have reasonable ratio and contain certain amount of organic matters,and can increase sugar content,obtain significant economic benefits,so it is worth popularization in large areas.
基金supported by China's National Natural Science Foundation (No. 41501043)by the "West Light" project of the Chinese Academy of Sciencesby the project of 60th Chinese postdoctorate science fund (No. 2016M602904)
文摘Iron deficiency chlorosis of Lilium davidii var. unicolor is often the case in practice in alkaline soils of northwest region of China. It is difficult to control iron chlorosis because of high cost and short effective work time of conventional iron fertilizers. In this study, a 2-year field experiment was conducted to evaluate the effects of two slow-release fertilizers on the suppression of iron deficiency chlorosis, soil chemical properties, and the yield and quality of L. davidii var. unicolor. Results show that both coated slow-release iron fertilizers and embedded slow-release iron fertilizer effectively controlled iron-deficiency chlorosis. The application of slow-release iron fertilizers significantly increased plant height and chlorophyll content of L. davidii var. unicolor at different growth stages. Furthermore, coated iron fertilizer application significantly increased starch, protein, soluble sugar and vitamin C content of L. davidii var. unicolor, and it also significantly improved total amino acid content, with increases in essential amino acids(Trp, Leu, Lys, Phe, Val, and Thr contents) and in nonessential amino acids(Asp, Glu, Cit, Ihs, Acc, Ala, Pro, and Cys contents). It was concluded that application of coated slow-release iron fertilizer could be a promising option for suppression of iron deficiency chlorosis and deserves further study.
基金Supported by Natural Science Foundation of Guangdong Province (No.05006556).
文摘Functional porous microspheres used for the slow release carrier of actives in cosmetics or pharmaceu- ticals were prepared by modified suspension polymerization of styrene (ST) with divinylbenzene (DVB) in the presence of toluene, cyclohexanol and heptane as porogenic diluents. The use of ultrasonic dispersion decreases the beads’ size and improves the uniformity. The effects of the porogen mixture, DVB content and solvent extraction on the surface performance of the synthesized beads were studied. The microspheres were characterized by scanning electron microscopy (SEM) and BET surface area determination. It was found that a great proportion of the non-solvating porogen increases the pore diameter and the specific surface area. High DVB concentration also re- sults in the great specific surface area and porosity. When the ratio of toluene/cyclohexanol is 1:2, DVB content is at the range of 40%—60% and methylene chloride was used as extractant, the beads with good spherical shape and pore size were obtained. The prepared porous microspheres were applied as active carriers and showed satisfactory slow release effect. Over 10h constantly sustained release was observed in vitro releasing test for hydro- quinone-loaded microspheres. Great surface area promoted high concentration of released hydroquinone.
基金funded by the Higher Vocational Colleges and Higher Junior Colleges Research Project of Heilongjiang Provincial Education Department (11515077)
文摘Slow-release non-protein nitrogen feed has a large market demand. It has a long research history, but its production technology needs further improvement in order to realize the industrial production of slow-release non-protein nitrogen extruded feed. By designing the best formula and using chelating and emulsifying process, the slow-release non-protein nitrogen extruded feed additives were produced. This product increases milk yield and improves milk quality, thus increasing economic efficiency.
基金Supported by Sugar Crop Research System(CARS-170303)Training Project of"Yunling Industry Technology Leading Talent"(2018LJRC56)Special Funds for Construction of Modern Agricultural Industrial Technology System of Yunnan Province(YNGZTX-4-92)
文摘In order to select the long-acting,low toxic,low-risk and multi-functional new pesticides for the control of sugarcane borders and woolly aphids and precise and efficient application technology,the control effect of 10% monosultap · thiamethoxam granular formulation and 1% Bt · clothianidin granular formulation on sugarcane borders and woolly aphids were studied.The results showed that 10% monosultap·thiamethoxam GR and 1% Bt·clothianidin GR had good control effects on sugarcane borders and woolly aphids.They were ideal slow-release,long-acting,low toxic and multi-functional new pesticides used to control sugarcane borders and woolly aphids.They could be used alternately with other pesticides to delay the emergence and development of pest resistance to pesticides.The best dosage of the two pesticides in the field was 45 kg/hm^2.They could be mixed with fertilizer( 1200-1800 kg/hm^2),scattered in sugarcane ditches or at the base of sugarcane plants,and covered with soil or film from January to July.The control effect on dead heart seedlings damaged by borers could be up to above 79.2%,and the control effect on sugarcane woolly aphids could reach more than 98.8%.In comparison with the control group,the actual yield and sugar content of sugarcane increased by above 41 555 kg/hm^2 and 6.5% respectively.The application of slow-release,long-acting,strong systemic and multi-functional new agents with fertilizer around roots is convenient,precise and efficient,labor-saving,time-saving and environmentally friendly,and is worthy of being widely applied in sugarcane areas.
基金Supported by Science and Technology Program of Guizhou Province [Qian (2019)2411]Youth Fund of Guizhou Academy of Agricultural Sciences [(2017)15]Open Project of State Key Laboratory of Rice Biology (20200304)。
文摘[Objective] The paper was to study the slow release effects of eight common kinds of slow release solvents on n-hexane, and to provide a reference for the construction of slow release system of attractants or repellents synthesized by plant volatiles. [Method] The effect of slow release solvents on volatile quantity and release rate of n-hexane was compared by weight loss method. [Result] Under indoor natural conditions [(22±2) ℃,RH 50%±10%], the slow release effect of lubricating oil on n-hexane was the best, followed by liquid paraffin. The best ratio of slow release solvent(lubricating oil and liquid paraffin) and n-hexane was 5∶1 and the best mixing time was 3 h, which improved the slow release effects of n-hexane by6.3 and 4.7 times, and prolonged the half-life of n-hexane by 1.3 and 1.0 times, respectively. Slow release solvents mainly affected the post-half-life period of n-hexane, and the release rates of n-hexane mixed with lubricating oil and liquid paraffin were decreased by 10.4 and 7.7 times, respec-tively. During the half-life period, the release rates of n-hexane were decreased by 1.3 and 1.0 times, respectively. [Conclusion] Two kinds of slow release solvents with good slow release effect on volatile n-hexane are screened out, and the proportion and mixing time of slow release solvent and volatile are determined, which will provide technical support for the construction of plant volatile slow release system.
基金supported by Research University Grant Scheme(RUGS)University Putra Malaysia(No.03-02-12-2293RU)
文摘The fertiliser industry faces a continuing challenge to improve the efficiency of their products,particularly of nitrogenous fertilisers,and to minimise adverse impacts.Therefore,a new slow release fertilizer,ureaimpregnated woodchips from tropical plant biomass(oil palm frond and rubberwood),was developed.The morphology of the impregnated woodchips was investigated by scanning electron microscopy and the success of impregnation of urea and nitrogen deposition into the woodchips was confirmed by energy dispersive X-ray spectrometry.When nitrogen release patterns from impregnated woodchips fertiliser were simulated using a soil solution and distilled water as leaching solutions in a static condition for 768 h,release was slow and steady,although the release rate was lower in distilled water than in the soil solution.