Background:The objectives of this study were to determine the effect of commercial slow-release urea(SRU)on in vitro fermentation characteristics,nutrient digestibility,gas production,microbial protein synthesis and b...Background:The objectives of this study were to determine the effect of commercial slow-release urea(SRU)on in vitro fermentation characteristics,nutrient digestibility,gas production,microbial protein synthesis and bacterial community using a rumen simulation technique(RUSITEC).The experiment was a completely randomized design with four treatments and four replications of each treatment.Treatments were:control diet(no SRU addition),control diet plus 0.28%SRU(U28),or plus 0.56%SRU(U56),and control diet that was modified substituting a part of soybean meal equivalent to 0.35%SRU(MU35;dry matter[DM]basis).The experiment consisted of 8 d of adaptation and 7 d of data and sample collection.Rumen inoculum was obtained from three ruminally fistulated Angus cows fed the same diet to the substrate incubated.Results:Digestibility of DM,organic matter(OM),crude protein(CP),fibre and starch was not affected,but daily production of gas(P<0.07)and methane(P<0.05)was quadratically increased with increasing SRU supplementation.The increase of SRU addition did not affect fermentation pH and total volatile fatty acid(VFA)production,whereas linearly(P<0.01)decreased proportion of propionate,and linearly(P<0.01)increased acetate to propionate ratio and ammonia nitrogen(N)concentration.The microbial N efficiency was also linearly(P<0.03)improved with increasing supplementation of SRU.In comparison with control diet,the dietary substitution of SRU for part of soybean meal increased(P<0.05)the digestibility of DM,OM and CP and decreased(P<0.02)the total gas production.The total VFA production and acetate to propionate ratio did not differ between control and MU35,whereas the proportion of butyrate was lower(P<0.05)and that of branched-chain VFA was greater(P<0.05)with MU35 than control diet.Total and liquid-associated microbial N production as well as ammonia N concentration were greater(P<0.03)with MU35 than control diet.Observed operational taxonomic units(OTUs),Shannon diversity index,and beta diversity of the microbial community did not differ among treatments.Taxonomic analysis revealed no effect of adding SRU on the relative abundance of bacteria at the phylum level,while at the genus level,the beneficial impact of SRU on relative abundance of Rikenellaceae and Prevotellaceae in feed particleassociated bacteria,and the abundance of Roseburia in liquid associate bacteria was greater(P<0.05)with MU35.Conclusions:Supplementation of a dairy cow diet with SRU showed potential of increase in ammonia N concentration and microbial protein production,and change fermentation pattern to more acetate production.Adding SRU in dairy cow diet also showed beneficial effect on improving digestibility of OM and fibre.The results suggest that SRU can partially substitute soybean meal in dairy cow diet to increase microbial protein production without impairing rumen fermentation.展开更多
Machine transplanting and the application of slow-release nitrogen(N) fertilizer(SRNF) have played vital roles in the modernization of rice production. We aimed to determine the effects of potted-seedling transplantin...Machine transplanting and the application of slow-release nitrogen(N) fertilizer(SRNF) have played vital roles in the modernization of rice production. We aimed to determine the effects of potted-seedling transplanting—a new machine-transplanting method—and SRNF on hybrid rice yields. A 2-year splitplot experiment(2016–2017) was conducted in Meishan, Sichuan province, China, using two machinetransplanting methods(potted-seedling and blanket-seedling) and three N treatments. Total green leaf area, high-effective leaf area and its rate at heading, net photosynthetic rate of flag leaves 7 days after heading, glutamate synthase(GOGAT) and glutamine synthase(GS) activity after heading, dry matter production, and N accumulation at heading and maturity increased under the potted-seedling method or 70% SRNF as a base + 30% urea application at the panicle initiation stage(SBUP). Stem diameter and number of small and of all vascular bundles at the neck–panicle node in potted-seedling plants increased as a result of increasing numbers of effective panicles, secondary branches, and spikelets. In pottedseedling plants, treatment with SBUP increased the number of large and total vascular bundles at the panicle–neck internode and the number of differentiated and surviving secondary branches and spikelets and decreased the number of ineffective tillers and degenerated secondary branches and spikelets. We conclude that the potted-seedling machine transplanting method and SRNF combined with urea topdressing can strengthen the source–sink relationship in rice, resulting in higher yields.展开更多
After the sewage treatment, putting the wet sludge in which the heavy metal content is extremely low, corrupt and broken straw, bentonite, urea in proportioning according to the certain ratio, mixing well-distributed,...After the sewage treatment, putting the wet sludge in which the heavy metal content is extremely low, corrupt and broken straw, bentonite, urea in proportioning according to the certain ratio, mixing well-distributed, taking the shape of Nitrogen slow-release fertilizers, doing the dynamic bioleaching test by the method of Artificial rainfall simulation, researching the slow-release characteristic, water retention. When the mass ratio of the wet sludge whose water content is 82.5%: bentonite: corrupt and broken straw: urea is 62.5: 12.5: 12.5: 12.5, drip washing the 10g Nitrogen slow-release fertilizers by the 80ml distilled water after 48h, the residue rate of urea is 29.63%; Under the room temperature of 25 ℃, 77%RH, moisture evaporate 46.32% after 60 h. The results demonstrate that the slow-release fertilizer has a good release-effect of nitrogen and water conservation effect. It provides the basic for the development and application of the sewage in the aspect of Nitrogen slow-release fertilizers.展开更多
Effects of urea amended with urease and nitrification inhibitors on soil nematode communities were studied in a Hapli- Udic Argosol (Cambisol, FAO) in Liaoning Province of Northeast China. A completely random design...Effects of urea amended with urease and nitrification inhibitors on soil nematode communities were studied in a Hapli- Udic Argosol (Cambisol, FAO) in Liaoning Province of Northeast China. A completely random design with four treatments, i.e., conventional urea (CU), slow-release urea amended with a liquid urease inhibitor (SRU1), SRU1 +nitrification inhibitor dicyandiamide (SRU2), and SRU1 + nitrification inhibitor 3,5-dimethylpyrazole (SRU3) and four replicates were applied. Thirty-nine genera of nematodes were identified, with Cephalobus and Aphelenchus being dominant; and in all treatments, the dominant trophic group was bacterivores. In addition, during the growth period of spring wheat (Triticum aestivum L.), soil urease activity was lower in SRUs than in CU. The numbers of total nematodes and bacterivores at wheat heading and ripening stages, and omnivores-predators at ripening stage were higher in SUR3 than in CU, SRU1 and SRU2 (P 〈 0.05).展开更多
The fertiliser industry faces a continuing challenge to improve the efficiency of their products,particularly of nitrogenous fertilisers,and to minimise adverse impacts.Therefore,a new slow release fertilizer,ureaimpr...The fertiliser industry faces a continuing challenge to improve the efficiency of their products,particularly of nitrogenous fertilisers,and to minimise adverse impacts.Therefore,a new slow release fertilizer,ureaimpregnated woodchips from tropical plant biomass(oil palm frond and rubberwood),was developed.The morphology of the impregnated woodchips was investigated by scanning electron microscopy and the success of impregnation of urea and nitrogen deposition into the woodchips was confirmed by energy dispersive X-ray spectrometry.When nitrogen release patterns from impregnated woodchips fertiliser were simulated using a soil solution and distilled water as leaching solutions in a static condition for 768 h,release was slow and steady,although the release rate was lower in distilled water than in the soil solution.展开更多
A field experiment was carried out at the Shenyang Experimental Station of Ecology (CAS) in order to study the effects of slow-release urea fertilizers high polymer-coated urea (SRU1), SRU1 mixed with dicyandiamide DC...A field experiment was carried out at the Shenyang Experimental Station of Ecology (CAS) in order to study the effects of slow-release urea fertilizers high polymer-coated urea (SRU1), SRU1 mixed with dicyandiamide DCD (SRU2), and SRU1 mixed with calcium carbide CaC2 (SRU3) on urease activity, microbial biomass C and N, and nematode communities in an aquic brown soil during the maize growth period. The results demonstrated that the application of slow-release urea fertilizers inhibits soil urease activity and increases the soil NH4+-N content.Soil available N increment could promote its immobilization by microorganisms. Determination of soil microbial biomass N indicated that a combined application of coated urea and nitrification inhibitors increased the soil active N pool. The population of predators/omnivores indicated that treatment with SRU2 could provide enough soil NH4+-N to promote maize growth and increased the food resource for the soil fauna compared with the other treatments.展开更多
The effect of slow-release urea on soil nematode community structure was investigated in a soybean field in northeast China.Three treatments,no urea(CK),conventional urea(U)and slow-release urea(SRU),were arranged in ...The effect of slow-release urea on soil nematode community structure was investigated in a soybean field in northeast China.Three treatments,no urea(CK),conventional urea(U)and slow-release urea(SRU),were arranged in a completely random design.The results show that the abundance of total nematodes was significantly higher in SRU than in CK and U.Significant differences in the abundance of bacterivores with colonizer-persister(cp)values 2–3,fungivores with cp 2 and herbivores with cp 3 were found among different treatments.Forty-one genera were identified,of which Acrobeloides,Aphelenchus and Heterodera were dominant.Soil nematode guilds and genera exhibited different responses to slow-release urea.The most trophic groups and genera had greater abundances in SRU than in CK and U.Slow-release urea had a positive effect on soil nematode community structure.展开更多
基金financially supported by the Alberta Agriculture and Forestry(#2015E006R)King Techina Feed Co.,Ltd.(Hangzhou, China)。
文摘Background:The objectives of this study were to determine the effect of commercial slow-release urea(SRU)on in vitro fermentation characteristics,nutrient digestibility,gas production,microbial protein synthesis and bacterial community using a rumen simulation technique(RUSITEC).The experiment was a completely randomized design with four treatments and four replications of each treatment.Treatments were:control diet(no SRU addition),control diet plus 0.28%SRU(U28),or plus 0.56%SRU(U56),and control diet that was modified substituting a part of soybean meal equivalent to 0.35%SRU(MU35;dry matter[DM]basis).The experiment consisted of 8 d of adaptation and 7 d of data and sample collection.Rumen inoculum was obtained from three ruminally fistulated Angus cows fed the same diet to the substrate incubated.Results:Digestibility of DM,organic matter(OM),crude protein(CP),fibre and starch was not affected,but daily production of gas(P<0.07)and methane(P<0.05)was quadratically increased with increasing SRU supplementation.The increase of SRU addition did not affect fermentation pH and total volatile fatty acid(VFA)production,whereas linearly(P<0.01)decreased proportion of propionate,and linearly(P<0.01)increased acetate to propionate ratio and ammonia nitrogen(N)concentration.The microbial N efficiency was also linearly(P<0.03)improved with increasing supplementation of SRU.In comparison with control diet,the dietary substitution of SRU for part of soybean meal increased(P<0.05)the digestibility of DM,OM and CP and decreased(P<0.02)the total gas production.The total VFA production and acetate to propionate ratio did not differ between control and MU35,whereas the proportion of butyrate was lower(P<0.05)and that of branched-chain VFA was greater(P<0.05)with MU35 than control diet.Total and liquid-associated microbial N production as well as ammonia N concentration were greater(P<0.03)with MU35 than control diet.Observed operational taxonomic units(OTUs),Shannon diversity index,and beta diversity of the microbial community did not differ among treatments.Taxonomic analysis revealed no effect of adding SRU on the relative abundance of bacteria at the phylum level,while at the genus level,the beneficial impact of SRU on relative abundance of Rikenellaceae and Prevotellaceae in feed particleassociated bacteria,and the abundance of Roseburia in liquid associate bacteria was greater(P<0.05)with MU35.Conclusions:Supplementation of a dairy cow diet with SRU showed potential of increase in ammonia N concentration and microbial protein production,and change fermentation pattern to more acetate production.Adding SRU in dairy cow diet also showed beneficial effect on improving digestibility of OM and fibre.The results suggest that SRU can partially substitute soybean meal in dairy cow diet to increase microbial protein production without impairing rumen fermentation.
基金supported by the National Key Research and Development Program of China(2017YFD0301701 and 2017YFD0301706)National Natural Science Foundation of China(31660369)。
文摘Machine transplanting and the application of slow-release nitrogen(N) fertilizer(SRNF) have played vital roles in the modernization of rice production. We aimed to determine the effects of potted-seedling transplanting—a new machine-transplanting method—and SRNF on hybrid rice yields. A 2-year splitplot experiment(2016–2017) was conducted in Meishan, Sichuan province, China, using two machinetransplanting methods(potted-seedling and blanket-seedling) and three N treatments. Total green leaf area, high-effective leaf area and its rate at heading, net photosynthetic rate of flag leaves 7 days after heading, glutamate synthase(GOGAT) and glutamine synthase(GS) activity after heading, dry matter production, and N accumulation at heading and maturity increased under the potted-seedling method or 70% SRNF as a base + 30% urea application at the panicle initiation stage(SBUP). Stem diameter and number of small and of all vascular bundles at the neck–panicle node in potted-seedling plants increased as a result of increasing numbers of effective panicles, secondary branches, and spikelets. In pottedseedling plants, treatment with SBUP increased the number of large and total vascular bundles at the panicle–neck internode and the number of differentiated and surviving secondary branches and spikelets and decreased the number of ineffective tillers and degenerated secondary branches and spikelets. We conclude that the potted-seedling machine transplanting method and SRNF combined with urea topdressing can strengthen the source–sink relationship in rice, resulting in higher yields.
文摘After the sewage treatment, putting the wet sludge in which the heavy metal content is extremely low, corrupt and broken straw, bentonite, urea in proportioning according to the certain ratio, mixing well-distributed, taking the shape of Nitrogen slow-release fertilizers, doing the dynamic bioleaching test by the method of Artificial rainfall simulation, researching the slow-release characteristic, water retention. When the mass ratio of the wet sludge whose water content is 82.5%: bentonite: corrupt and broken straw: urea is 62.5: 12.5: 12.5: 12.5, drip washing the 10g Nitrogen slow-release fertilizers by the 80ml distilled water after 48h, the residue rate of urea is 29.63%; Under the room temperature of 25 ℃, 77%RH, moisture evaporate 46.32% after 60 h. The results demonstrate that the slow-release fertilizer has a good release-effect of nitrogen and water conservation effect. It provides the basic for the development and application of the sewage in the aspect of Nitrogen slow-release fertilizers.
基金Project supported by the National Key Basic Research Support Foundation of China (No. 2005CB121105) and the National High Technology Research and Development Program of China (No. 2005AA001480).
文摘Effects of urea amended with urease and nitrification inhibitors on soil nematode communities were studied in a Hapli- Udic Argosol (Cambisol, FAO) in Liaoning Province of Northeast China. A completely random design with four treatments, i.e., conventional urea (CU), slow-release urea amended with a liquid urease inhibitor (SRU1), SRU1 +nitrification inhibitor dicyandiamide (SRU2), and SRU1 + nitrification inhibitor 3,5-dimethylpyrazole (SRU3) and four replicates were applied. Thirty-nine genera of nematodes were identified, with Cephalobus and Aphelenchus being dominant; and in all treatments, the dominant trophic group was bacterivores. In addition, during the growth period of spring wheat (Triticum aestivum L.), soil urease activity was lower in SRUs than in CU. The numbers of total nematodes and bacterivores at wheat heading and ripening stages, and omnivores-predators at ripening stage were higher in SUR3 than in CU, SRU1 and SRU2 (P 〈 0.05).
基金supported by Research University Grant Scheme(RUGS)University Putra Malaysia(No.03-02-12-2293RU)
文摘The fertiliser industry faces a continuing challenge to improve the efficiency of their products,particularly of nitrogenous fertilisers,and to minimise adverse impacts.Therefore,a new slow release fertilizer,ureaimpregnated woodchips from tropical plant biomass(oil palm frond and rubberwood),was developed.The morphology of the impregnated woodchips was investigated by scanning electron microscopy and the success of impregnation of urea and nitrogen deposition into the woodchips was confirmed by energy dispersive X-ray spectrometry.When nitrogen release patterns from impregnated woodchips fertiliser were simulated using a soil solution and distilled water as leaching solutions in a static condition for 768 h,release was slow and steady,although the release rate was lower in distilled water than in the soil solution.
文摘A field experiment was carried out at the Shenyang Experimental Station of Ecology (CAS) in order to study the effects of slow-release urea fertilizers high polymer-coated urea (SRU1), SRU1 mixed with dicyandiamide DCD (SRU2), and SRU1 mixed with calcium carbide CaC2 (SRU3) on urease activity, microbial biomass C and N, and nematode communities in an aquic brown soil during the maize growth period. The results demonstrated that the application of slow-release urea fertilizers inhibits soil urease activity and increases the soil NH4+-N content.Soil available N increment could promote its immobilization by microorganisms. Determination of soil microbial biomass N indicated that a combined application of coated urea and nitrification inhibitors increased the soil active N pool. The population of predators/omnivores indicated that treatment with SRU2 could provide enough soil NH4+-N to promote maize growth and increased the food resource for the soil fauna compared with the other treatments.
基金This research was supported by the Key Project of the Heilongjiang Provincial Bureau of Science and Technology(No.GA06C101-01)。
文摘The effect of slow-release urea on soil nematode community structure was investigated in a soybean field in northeast China.Three treatments,no urea(CK),conventional urea(U)and slow-release urea(SRU),were arranged in a completely random design.The results show that the abundance of total nematodes was significantly higher in SRU than in CK and U.Significant differences in the abundance of bacterivores with colonizer-persister(cp)values 2–3,fungivores with cp 2 and herbivores with cp 3 were found among different treatments.Forty-one genera were identified,of which Acrobeloides,Aphelenchus and Heterodera were dominant.Soil nematode guilds and genera exhibited different responses to slow-release urea.The most trophic groups and genera had greater abundances in SRU than in CK and U.Slow-release urea had a positive effect on soil nematode community structure.