We present a scheme that is able to achieve the ghost imaging with broad distance. The physical nature of our scheme is that the different wavelength beams are separated in free space by an optical media according to ...We present a scheme that is able to achieve the ghost imaging with broad distance. The physical nature of our scheme is that the different wavelength beams are separated in free space by an optical media according to the slow light or dispersion principle. Meanwhile, the equality of the optical distance of the two light arms is not violated. The photon correlation is achieved by the rotating ground glass plate(RGGP) and spatial light modulator(SLM), respectively. Our work shows that a monochromic ghost image can be obtained in the case of RGGP. More importantly, the position(or distance) of the object can be ascertained by the color of the image. Thus, the imaging and ranging processes are combined as one process for the first time to the best of our knowledge. In the case of SLM, we can obtain a colored image regardless of where the object is.展开更多
基于MCNP程序模拟计算了不同孔隙度二氧化硅介质地层14 Me V中子慢化长度与中子迁移长度。首先,模拟计算了241Am-Be中子源条件下不同孔隙度Si O2介质地层的中子通量空间分布,并利用源距均方值公式计算得到了对应的中子慢化长度LS和中子...基于MCNP程序模拟计算了不同孔隙度二氧化硅介质地层14 Me V中子慢化长度与中子迁移长度。首先,模拟计算了241Am-Be中子源条件下不同孔隙度Si O2介质地层的中子通量空间分布,并利用源距均方值公式计算得到了对应的中子慢化长度LS和中子迁移长度LM。与文献结果对比:中子特征长度LS与LM结果相对误差均值分别为1.20%与-2.60%;该结果验证了源距均方值公式计算中子特征长度的有效性和可行性。同样地,计算得到了不同孔隙度Si O2介质地层14 Me V中子的中子特征长度LS和LM;计算结果表明:14 Me V中子的中子特征长度同样随地层孔隙度的增加而降低;其中水的14Me V中子特征长度为LS=12.73 cm、LM=13.00 cm,Si O2的14 Me V中子特征长度为LS=30.08 cm、LM=34.31 cm;中子慢化长度LS结果与文献结果的相对偏差≤±3.1%。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61178012,11204156,11304179,and 11247240)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20133705110001 and 20123705120002)+1 种基金the Scientific Research Foundation for Outstanding Young Scientists of Shandong Province,China(Grant No.BS2013DX034)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2012FQ024)
文摘We present a scheme that is able to achieve the ghost imaging with broad distance. The physical nature of our scheme is that the different wavelength beams are separated in free space by an optical media according to the slow light or dispersion principle. Meanwhile, the equality of the optical distance of the two light arms is not violated. The photon correlation is achieved by the rotating ground glass plate(RGGP) and spatial light modulator(SLM), respectively. Our work shows that a monochromic ghost image can be obtained in the case of RGGP. More importantly, the position(or distance) of the object can be ascertained by the color of the image. Thus, the imaging and ranging processes are combined as one process for the first time to the best of our knowledge. In the case of SLM, we can obtain a colored image regardless of where the object is.
文摘基于MCNP程序模拟计算了不同孔隙度二氧化硅介质地层14 Me V中子慢化长度与中子迁移长度。首先,模拟计算了241Am-Be中子源条件下不同孔隙度Si O2介质地层的中子通量空间分布,并利用源距均方值公式计算得到了对应的中子慢化长度LS和中子迁移长度LM。与文献结果对比:中子特征长度LS与LM结果相对误差均值分别为1.20%与-2.60%;该结果验证了源距均方值公式计算中子特征长度的有效性和可行性。同样地,计算得到了不同孔隙度Si O2介质地层14 Me V中子的中子特征长度LS和LM;计算结果表明:14 Me V中子的中子特征长度同样随地层孔隙度的增加而降低;其中水的14Me V中子特征长度为LS=12.73 cm、LM=13.00 cm,Si O2的14 Me V中子特征长度为LS=30.08 cm、LM=34.31 cm;中子慢化长度LS结果与文献结果的相对偏差≤±3.1%。