期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于缓变特征学习的判别有序回归 被引量:1
1
作者 李亚克 高航 《计算机与现代化》 2016年第7期24-27,32,共5页
有序回归是一种重要的机器学习范式,其目标是针对输出离散且有序的数据建立一个回归器以预测相应有序输出或离散类标。尽管现有的有序回归方法通过利用此类先验有序信息获得了比一般方法更优的性能。但是,并没有考虑缓变学习准则与有序... 有序回归是一种重要的机器学习范式,其目标是针对输出离散且有序的数据建立一个回归器以预测相应有序输出或离散类标。尽管现有的有序回归方法通过利用此类先验有序信息获得了比一般方法更优的性能。但是,并没有考虑缓变学习准则与有序回归的结合。本文通过缓变学习准则对每个样本类构建多个类内时间序列计算缓变类内散度矩阵,然后在有序约束条件的基础上根据线性判别准则寻找最佳投影进行有序映射,提出一种新的基于缓变特征学习的判别有序回归方法(Slow Feature Learning Discriminant for Ordinal Regression,SFLDOR)。通过在8个标准有序回归数据集上的对比实验表明,本算法在回归和分类性能上均优于使用普通类内散度矩阵的算法。 展开更多
关键词 有序回归 缓变学习准则 时间序列 线性判别 缓变类内散度矩阵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部