To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments additi...To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments addition on the characteristics of ceramsite were investigated. Ceramsite with different Yellow River sediments additions was characterized using thermal analysis, X-ray diffraction, morphological structures analyses, pore size distributions and porosity analyses. Chemical components, especially ratios of Si O2 + Al2O3/Flux, were used to explain the glassy shell formation, physical properties and pores distribution of ultralightweight ceramsite; physical forces for instance expansion force and frictional resistance which combined with Si O2 + Al2O3/Flux ratios were used to explain the bloating mechanism. Results showed that the maximum addition of Yellow River sediments for making ultra-lightweight ceramsite was 35%. Macropores(between 0.226 μm and 0.554 μm) of ultra-lightweight ceramsite were dominant in the pore structures of ultra-lightweight ceramsite and its porosity was up to 67.7%. Physical force of expansion force was constant with the variation of Yellow River sediments content and physical force of frictional resistance was decreased with the increase of Yellow River sediments addition. The relationship between expansion and frictional resistance could determine the expansion rate of ceramsite. Larger pores inside the ceramsite bodies could be obtained as Yellow River sediments additions ranged from 10% to 30%. Ceramsite with higher Yellow River sediments additions of 40%(Si O2 + Al2O3/Flux ratios 4.25) became denser and have lower porosity. Crystal components analysis proved that the sintering process made some components of raw materials transfer into other crystals having better thermostability.展开更多
The dewaterability of activated sludge conditioned by chitosan flocculant was studied. The effects of chitosan characteristics such as molecular weight, degree of deacetylation, and dose on the dewaterability were inv...The dewaterability of activated sludge conditioned by chitosan flocculant was studied. The effects of chitosan characteristics such as molecular weight, degree of deacetylation, and dose on the dewaterability were investigated. The sludge dewaterability is evaluated in terms of specific resistance to filtration, residual turbidity of supernatant, moisture content of cake, and settling rate. Sludge dehydrating behaviors conditioned with CTS, PAM and PAC flocculants were compared. The conditioning was also carried out with dual flocculants in two stages. It is found that the sludge conditioned with CTS has better dewaterability than that with PAC. The optimum conditions with chitosan are: dose 0.8 - 1.2 g per 100 g dry cake, molecular weight 300,000, and degree of deacetylation 70%. The conditioning in two stages with dual flocculants is found to be more effective than that with single flocculant.展开更多
基金Funded by the Doctoral Program of Higher Education of China(No.20100131110005)
文摘To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments addition on the characteristics of ceramsite were investigated. Ceramsite with different Yellow River sediments additions was characterized using thermal analysis, X-ray diffraction, morphological structures analyses, pore size distributions and porosity analyses. Chemical components, especially ratios of Si O2 + Al2O3/Flux, were used to explain the glassy shell formation, physical properties and pores distribution of ultralightweight ceramsite; physical forces for instance expansion force and frictional resistance which combined with Si O2 + Al2O3/Flux ratios were used to explain the bloating mechanism. Results showed that the maximum addition of Yellow River sediments for making ultra-lightweight ceramsite was 35%. Macropores(between 0.226 μm and 0.554 μm) of ultra-lightweight ceramsite were dominant in the pore structures of ultra-lightweight ceramsite and its porosity was up to 67.7%. Physical force of expansion force was constant with the variation of Yellow River sediments content and physical force of frictional resistance was decreased with the increase of Yellow River sediments addition. The relationship between expansion and frictional resistance could determine the expansion rate of ceramsite. Larger pores inside the ceramsite bodies could be obtained as Yellow River sediments additions ranged from 10% to 30%. Ceramsite with higher Yellow River sediments additions of 40%(Si O2 + Al2O3/Flux ratios 4.25) became denser and have lower porosity. Crystal components analysis proved that the sintering process made some components of raw materials transfer into other crystals having better thermostability.
文摘The dewaterability of activated sludge conditioned by chitosan flocculant was studied. The effects of chitosan characteristics such as molecular weight, degree of deacetylation, and dose on the dewaterability were investigated. The sludge dewaterability is evaluated in terms of specific resistance to filtration, residual turbidity of supernatant, moisture content of cake, and settling rate. Sludge dehydrating behaviors conditioned with CTS, PAM and PAC flocculants were compared. The conditioning was also carried out with dual flocculants in two stages. It is found that the sludge conditioned with CTS has better dewaterability than that with PAC. The optimum conditions with chitosan are: dose 0.8 - 1.2 g per 100 g dry cake, molecular weight 300,000, and degree of deacetylation 70%. The conditioning in two stages with dual flocculants is found to be more effective than that with single flocculant.