This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-dra...This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-drainage,and scanning electron microscopy(SEM)tests,the effects of prehydrolysis duration(T),urease activity(UA)and curing age(CA)on the mechanical properties and microstructural characteristics of bio-carbonized samples were systematically investigated and analyzed.The results demonstrated that the proposed method could significantly enhance urea hydrolysis and RMC bio-carbonation to achieve efficient stabilization of dredged sludge with 80%high water content.A significant strength increment of up to about 1063.36 kPa was obtained for the bio-carbonized samples after just 7 d of curing,which was 2.64 times higher than that of the 28-day cured ordinary Portland cement-reinforced samples.Both elevated T and UA could notably increase urea utilization ratio and carbonate ion yield,but the resulting surge in supersaturation also affected the precipitation patterns of hydrated magnesia carbonates(HMCs),which weakened the cementation effect of HMCs on soil particles and further inhibited strength enhancement of bio-carbonized samples.The optimum formula was determined to be the case of T?24 h and UA?10 U/mL for dredged sludge stabilization.A 7-day CA was enough for bio-carbonized samples to obtain stable strength,albeit slightly affected by UA.The benefits of high efficiency and water stability presented the potential of this method in achieving dredged sludge stabilization and resource utilization.This investigation provides informative ideas and valuable insights on implementing advanced bio-geotechnical techniques to achieve efficient stabilization of soft soil,such as dredged sludge.展开更多
Algae-caused black bloom (also known as black water agglomerate) has recently become a critical problem in some Chinese lakes.It has been suggested that the occurrence of algae-caused black bloom was caused by the c...Algae-caused black bloom (also known as black water agglomerate) has recently become a critical problem in some Chinese lakes.It has been suggested that the occurrence of algae-caused black bloom was caused by the cooperation of nutrient-rich sediment with dead algae,and sludge dredging was adopted to control black bloom in some lakes of China.In this article,based on the simulation of black bloom using a Y-shape apparatus for modeling natural conditions,both un-dredged and dredged sites in three areas of Taihu Lake,China were studied to estimate the effects of dredging on the prevention and control of black bloom.During the experiment,drained algae were added to all six sites as an additional organic load;subsequently,the dissolved oxygen decreased rapidly,dropping to 0 mg/L at the sediment-water interface.Black bloom did not occur in the dredged sites of Moon Bay and Nan Quan,whereas all three un-dredged sites at Fudu Port,Moon Bay and Nan Quan experienced black bloom.Black bloom also occurred at the dredged site of Fudu Port one day later than at the other sites,and the odor and color were lighter than at the other locations.The color and odor of the black water mainly result from the presence of sulfides such as metal sulfides and hydrogen sulfide,among other chemicals,under reductive conditions.The color and odor of the water,together with the high concentrations of nutrients,were mainly caused by the decomposition of the algae and the presence of nutrient-rich sediment.Overall,the removal of the nutrient-rich sediment by dredging can prevent the occurrence and control the degree of algae-caused black bloom in Taihu Lake.展开更多
The aim of this research is to find substitute barrier materials for natural clay from two kinds of municipal sludge: waterworks sludge(S_w) and dredging sludge(S_d). Laboratory tests were performed firstly to determi...The aim of this research is to find substitute barrier materials for natural clay from two kinds of municipal sludge: waterworks sludge(S_w) and dredging sludge(S_d). Laboratory tests were performed firstly to determine their Atterberg limits and hydraulic conductivity. Based on the results, the use of waterworks sludge was recommended. Then, shear strength tests were performed and it was found the shear resistance property of waterworks sludge is strong enough to maintain slope stability. In order to evaluate the possibility of secondary pollution, the heavy metal contents of waterworks sludge was determined and the results indicated that secondary pollution is unlikely happened. Finally, economic analysis proves that reusing waterworks sludge as barrier will reduce the lost a great for both landfill and waterworks. Based on the results, waterworks sludge was proposed to use and a further long-term simulated landfill test was suggested.展开更多
This paper investigates the effectiveness of nano-modification on the strength enhancement of cementstabilized dredged sludge(CDS).Three types of nanoparticles including nano-SiO2(NS),nano-Al2O3(NA)and nano-MgO(NM)wer...This paper investigates the effectiveness of nano-modification on the strength enhancement of cementstabilized dredged sludge(CDS).Three types of nanoparticles including nano-SiO2(NS),nano-Al2O3(NA)and nano-MgO(NM)were used as cement admixtures for dredged sludge stabilization.Effects of single nanoparticle content,mass ratio of composite nanoparticles and curing time on the strength development of CDS were evaluated via a series of unconfined compressive strength(UCS)tests.The pH evolutions of CDS caused by nanoparticles were also examined by a range of pH tests.Furthermore,micromechanisms reflecting the strength evolutions were analyzed by performing scanning electron microscopy(SEM)and X-ray diffraction(XRD)tests.The results indicated that adding nanoparticles can significantly improve the UCS of CDS.For single nano-modification,the optimum contents of NS,NA and NM were 4%e6%,6%and 8%,which can increase the 7-and 28-d UCSs of CDS by 38%and 50%,17%and 35%,65%and 67%,respectively.Compared with single nano-modification,composite nano-modifications were more effective in improving the strength gain of CDS.The optimum mass ratios of composite nanoparticles,namely NS/NA,NS/NM and NA/NM,were 9/1,3/7 and 3/7,respectively.Based on the strength growth rate,the composite nanoparticles with NS/NM of 3/7 were highly recommended.The addition of nanoparticles obviously affected the pH evolution of CDS,which was mainly determined by the difference of OHproduction and consumption inside nano-modified CDS.The microstructural analysis revealed that C-S-H and C-A-H gels are the main cementitious products,and the addition of nanoparticles can obviously contribute to a denser and more homogenous microstructure of CDS.展开更多
Organic polymeric flocculants are commonly used in improving dredged sludge dewaterability, but less attention has been paid to residual water quality. In this paper, the effects of cationic etherified starch(CS) and ...Organic polymeric flocculants are commonly used in improving dredged sludge dewaterability, but less attention has been paid to residual water quality. In this paper, the effects of cationic etherified starch(CS) and poly-dimethyl diallyl ammonium chloride(PDDA) on dredged sludge dewatering efficiency and residual water quality of Baiyangdian lake were comprehensively investigated and evaluated by analytic hierarchy process(AHP). The results indicated that PDDA had stronger electrical effect and flocculation performance compared with CS, resulting in more efficient dewatering performance. PDDA can reduce the pollutants of discharged residual water, while CS significantly promoted the increase of NH_(4)^(+)-N and NO_(3)^(–)-N in the residual water. The increase of NH_(4)^(+)-N in the residual water of CS was due to the release of dredged sludge, while the increase of NO_(3)^(-)-N was introduced by CS leaching. AHP showed that PDDA performed better in flocculation treatment of dredged sludge than other organic polymers. This work provides a method for optimization of flocculation treatment for dredged sludge dewaterability.展开更多
Due to large-scale dredging operations, a large amount of sludge is inevitably produced. Large areas of land are occupied when the dredged sludge is discarded in the disposal site as waste material. The sludge dewater...Due to large-scale dredging operations, a large amount of sludge is inevitably produced. Large areas of land are occupied when the dredged sludge is discarded in the disposal site as waste material. The sludge dewatering with aeration-vacuum (SDAV) method is suit for treating the sludge with high water content and high clay content in the disposal site. The water in the sludge can be discharged out. The volume of the sludge can be reduced quickly, and the recycling of the land can be accelerated by this method. Most importantly, this technique is an efficient way to deal with clogging problems when pumping water from high water content, high clay content dredged sludge. Vacuum degree range tests, the aeration rate range tests, and the influencing factors of sludge dewatering behavior tests were conducted with a self-developed SDAV model test device. Sludge samples were taken from the South-to-North Water Diversion East Line Project in Huai’an White-Horse Lake disposal site, Jiangsu Province, China. The optimal range of vacuum degree and aeration rate were obtained through the test results, and the mechanisms for how the two factors work and how they affect the sludge dewatering behavior were analyzed. The suitable vacuum degree range in SDAV is below 50 kPa, and the suitable aeration rate is about 1.0 m3/h. The low-vacuum degree contributes to reduce the ad-sorption effect of micro-channels on soil particles in filter material and to maintain the arch structures. Aeration has the effects of expansion, disturbance, changing Reynolds number, and dynamic sieve separating. The pump quantity of water per meter of filter tube (m) has different change rules as the vacuum degree changes under different aeration rates. The reason is that the formed arch structures’ conformation and permeability differ greatly under different combined-conditions of vacuum degree and aeration rate. The optimal combined-condition for dewatering the sludge is 35 kPa with 1.0 m3/h.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41925012 and 42230710)the Key Laboratory Cooperation Special Project of Western Cross Team of Western Light,CAS(Grant No.xbzg-zdsys-202107).
文摘This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-drainage,and scanning electron microscopy(SEM)tests,the effects of prehydrolysis duration(T),urease activity(UA)and curing age(CA)on the mechanical properties and microstructural characteristics of bio-carbonized samples were systematically investigated and analyzed.The results demonstrated that the proposed method could significantly enhance urea hydrolysis and RMC bio-carbonation to achieve efficient stabilization of dredged sludge with 80%high water content.A significant strength increment of up to about 1063.36 kPa was obtained for the bio-carbonized samples after just 7 d of curing,which was 2.64 times higher than that of the 28-day cured ordinary Portland cement-reinforced samples.Both elevated T and UA could notably increase urea utilization ratio and carbonate ion yield,but the resulting surge in supersaturation also affected the precipitation patterns of hydrated magnesia carbonates(HMCs),which weakened the cementation effect of HMCs on soil particles and further inhibited strength enhancement of bio-carbonized samples.The optimum formula was determined to be the case of T?24 h and UA?10 U/mL for dredged sludge stabilization.A 7-day CA was enough for bio-carbonized samples to obtain stable strength,albeit slightly affected by UA.The benefits of high efficiency and water stability presented the potential of this method in achieving dredged sludge stabilization and resource utilization.This investigation provides informative ideas and valuable insights on implementing advanced bio-geotechnical techniques to achieve efficient stabilization of soft soil,such as dredged sludge.
基金supported by the Industry-Academia Cooperation Innovation Fund Project of Jiangsu Province(No.BY2011165)the Innovation Program of the Chinese Academy of Sciences(No.KZCX2-EW-314)+1 种基金the Key Project of"One Three Five"Strategic Developing Plan(No.NIGLAS2012135008)the National Water Pollution Control and Management Technology Major Project(No.2012ZX07103-005,2012ZX07101-010)
文摘Algae-caused black bloom (also known as black water agglomerate) has recently become a critical problem in some Chinese lakes.It has been suggested that the occurrence of algae-caused black bloom was caused by the cooperation of nutrient-rich sediment with dead algae,and sludge dredging was adopted to control black bloom in some lakes of China.In this article,based on the simulation of black bloom using a Y-shape apparatus for modeling natural conditions,both un-dredged and dredged sites in three areas of Taihu Lake,China were studied to estimate the effects of dredging on the prevention and control of black bloom.During the experiment,drained algae were added to all six sites as an additional organic load;subsequently,the dissolved oxygen decreased rapidly,dropping to 0 mg/L at the sediment-water interface.Black bloom did not occur in the dredged sites of Moon Bay and Nan Quan,whereas all three un-dredged sites at Fudu Port,Moon Bay and Nan Quan experienced black bloom.Black bloom also occurred at the dredged site of Fudu Port one day later than at the other sites,and the odor and color were lighter than at the other locations.The color and odor of the black water mainly result from the presence of sulfides such as metal sulfides and hydrogen sulfide,among other chemicals,under reductive conditions.The color and odor of the water,together with the high concentrations of nutrients,were mainly caused by the decomposition of the algae and the presence of nutrient-rich sediment.Overall,the removal of the nutrient-rich sediment by dredging can prevent the occurrence and control the degree of algae-caused black bloom in Taihu Lake.
文摘The aim of this research is to find substitute barrier materials for natural clay from two kinds of municipal sludge: waterworks sludge(S_w) and dredging sludge(S_d). Laboratory tests were performed firstly to determine their Atterberg limits and hydraulic conductivity. Based on the results, the use of waterworks sludge was recommended. Then, shear strength tests were performed and it was found the shear resistance property of waterworks sludge is strong enough to maintain slope stability. In order to evaluate the possibility of secondary pollution, the heavy metal contents of waterworks sludge was determined and the results indicated that secondary pollution is unlikely happened. Finally, economic analysis proves that reusing waterworks sludge as barrier will reduce the lost a great for both landfill and waterworks. Based on the results, waterworks sludge was proposed to use and a further long-term simulated landfill test was suggested.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51972209).
文摘This paper investigates the effectiveness of nano-modification on the strength enhancement of cementstabilized dredged sludge(CDS).Three types of nanoparticles including nano-SiO2(NS),nano-Al2O3(NA)and nano-MgO(NM)were used as cement admixtures for dredged sludge stabilization.Effects of single nanoparticle content,mass ratio of composite nanoparticles and curing time on the strength development of CDS were evaluated via a series of unconfined compressive strength(UCS)tests.The pH evolutions of CDS caused by nanoparticles were also examined by a range of pH tests.Furthermore,micromechanisms reflecting the strength evolutions were analyzed by performing scanning electron microscopy(SEM)and X-ray diffraction(XRD)tests.The results indicated that adding nanoparticles can significantly improve the UCS of CDS.For single nano-modification,the optimum contents of NS,NA and NM were 4%e6%,6%and 8%,which can increase the 7-and 28-d UCSs of CDS by 38%and 50%,17%and 35%,65%and 67%,respectively.Compared with single nano-modification,composite nano-modifications were more effective in improving the strength gain of CDS.The optimum mass ratios of composite nanoparticles,namely NS/NA,NS/NM and NA/NM,were 9/1,3/7 and 3/7,respectively.Based on the strength growth rate,the composite nanoparticles with NS/NM of 3/7 were highly recommended.The addition of nanoparticles obviously affected the pH evolution of CDS,which was mainly determined by the difference of OHproduction and consumption inside nano-modified CDS.The microstructural analysis revealed that C-S-H and C-A-H gels are the main cementitious products,and the addition of nanoparticles can obviously contribute to a denser and more homogenous microstructure of CDS.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment(No.2018ZX07110004)。
文摘Organic polymeric flocculants are commonly used in improving dredged sludge dewaterability, but less attention has been paid to residual water quality. In this paper, the effects of cationic etherified starch(CS) and poly-dimethyl diallyl ammonium chloride(PDDA) on dredged sludge dewatering efficiency and residual water quality of Baiyangdian lake were comprehensively investigated and evaluated by analytic hierarchy process(AHP). The results indicated that PDDA had stronger electrical effect and flocculation performance compared with CS, resulting in more efficient dewatering performance. PDDA can reduce the pollutants of discharged residual water, while CS significantly promoted the increase of NH_(4)^(+)-N and NO_(3)^(–)-N in the residual water. The increase of NH_(4)^(+)-N in the residual water of CS was due to the release of dredged sludge, while the increase of NO_(3)^(-)-N was introduced by CS leaching. AHP showed that PDDA performed better in flocculation treatment of dredged sludge than other organic polymers. This work provides a method for optimization of flocculation treatment for dredged sludge dewaterability.
基金Project supported by the National Natural Science Foundation of China (No. 50879023)the National Hi-Tech Research and Development Program (863) of China (No. 2007AA11Z135)the Min-istry of Water Resources Nonprofit Public Industry Special Foundation of China (No. 200701045)
文摘Due to large-scale dredging operations, a large amount of sludge is inevitably produced. Large areas of land are occupied when the dredged sludge is discarded in the disposal site as waste material. The sludge dewatering with aeration-vacuum (SDAV) method is suit for treating the sludge with high water content and high clay content in the disposal site. The water in the sludge can be discharged out. The volume of the sludge can be reduced quickly, and the recycling of the land can be accelerated by this method. Most importantly, this technique is an efficient way to deal with clogging problems when pumping water from high water content, high clay content dredged sludge. Vacuum degree range tests, the aeration rate range tests, and the influencing factors of sludge dewatering behavior tests were conducted with a self-developed SDAV model test device. Sludge samples were taken from the South-to-North Water Diversion East Line Project in Huai’an White-Horse Lake disposal site, Jiangsu Province, China. The optimal range of vacuum degree and aeration rate were obtained through the test results, and the mechanisms for how the two factors work and how they affect the sludge dewatering behavior were analyzed. The suitable vacuum degree range in SDAV is below 50 kPa, and the suitable aeration rate is about 1.0 m3/h. The low-vacuum degree contributes to reduce the ad-sorption effect of micro-channels on soil particles in filter material and to maintain the arch structures. Aeration has the effects of expansion, disturbance, changing Reynolds number, and dynamic sieve separating. The pump quantity of water per meter of filter tube (m) has different change rules as the vacuum degree changes under different aeration rates. The reason is that the formed arch structures’ conformation and permeability differ greatly under different combined-conditions of vacuum degree and aeration rate. The optimal combined-condition for dewatering the sludge is 35 kPa with 1.0 m3/h.