Concentrations of polychlorinated biphenyls (PCBs) have been measured in sewage sludge samples from 8 urban wastewater treatment plants in Beijing, China. The PCB congeners were analyzed by isotope dilution high res...Concentrations of polychlorinated biphenyls (PCBs) have been measured in sewage sludge samples from 8 urban wastewater treatment plants in Beijing, China. The PCB congeners were analyzed by isotope dilution high resolution gas chromatography/high resolution mass spectrometry method. The concentration of PCBs ranged from 65.6 to 157 ng/g dry weight (dw), with a mean value of 101 ng/g dw. The dioxin-like PCB WHO-TEQs (World Health Organization-Toxic Equivalents) of the sludge were lower than 1 pg /g dw. Consequently, all the concentrations of PCBs in sludge samples were below the upper limit for land application according to the Chinese legislation law for agriculture use. The PCB homologue profiles in sludge samples were dominated by tri-CBs and tetra- CBs. Similar distributions have been found in one of the Chinese PCB commercial products. The patterns of dioxin-like and indicator congeners observed in this study were quite similar in all samples. The predominant congener for dioxin-like and indicator PCBs were PCB-118 and PCB-28, respectively, while PCB-126 had the highest TEQ value.展开更多
We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction frag...We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction fragment length polymorphism (T-RFLP), cloning, and sequencing of the α-subunit of the ammonia monooxygenase gene (amoA). The T-RFLP fingerprint analyses showed that different wastewater treatment systems harbored distinct AOB communities. However, there was no remarkable difference among the AOB T- RFLP profiles from different parts of the same system. The T-RFLP fingerprints showed that a full-scale wastewater treatment plant (WWTP) contained a larger number of dominant AOB species than a pilot-scale reactor. The source of influent affected the AOB community, and the WWTPs treating domestic wastewater contained a higher AOB diversity than those receiving mixed domestic and industrial wastewater. However, the AOB community structure was little affected by the treatment process in this study. Phylogenetic analysis of the cloned amoA genes clearly indicated that all the dominant AOB in the systems was closely related to Nitrosomonas spp. not to Nitrosospira spp. Members of the Nitrosomonas oligotropha and Nitrosomonas communis clusters were found in all samples, while members of Nitrosomonas europaea cluster occurred in some systems.展开更多
A newly developed model for the optimum municipal wastewater treatment plant(MWTP) design is presented. Through introducing the interval variables, the model attempts to consider the effects of uncertainties caused by...A newly developed model for the optimum municipal wastewater treatment plant(MWTP) design is presented. Through introducing the interval variables, the model attempts to consider the effects of uncertainties caused by the fluctuation of the wastewater quality and quantity during the design of MWTP. The model solution procedure is illustrated in detail, and a numerical example is given to verify the feasibility and advantage of the model. Furthermore, the possibility of the model application is briefly outlined.展开更多
Microplastics, plastic pieces of ≤5 mm in size, are ubiquitous in ther environment and can be found in both terrestrial and aquatic ecosystems. This manuscript reviews the literature on the fate of microplastics in w...Microplastics, plastic pieces of ≤5 mm in size, are ubiquitous in ther environment and can be found in both terrestrial and aquatic ecosystems. This manuscript reviews the literature on the fate of microplastics in wastewater treatment and briefly highlights novel developments in the removal of microplastics from aqueous systems.展开更多
Mathematical models and simulation are considered a powerful tool in engineering practice. Those tools are becoming increasingly used for the improvement of wastewater treatment plants design because the conceptual de...Mathematical models and simulation are considered a powerful tool in engineering practice. Those tools are becoming increasingly used for the improvement of wastewater treatment plants design because the conceptual design is complex and ill-defined. In this paper, three alternatives: 1) complete mix activated sludge without nitrogen removal (CAS);2) complete mix activated sludge with nitrogen removal (CAS-N) and;3) membrane bioreactor (MBR) processes were designed into two steps: first concept design to calculate the size of process units, then second implement modeling and simulation to improve the accuracy of the conceptual design. In brief, the treatment process design has been verified by using the activated sludge model No. 1 (ASM1) in GPS-X (v.7) simulation software. This application helps not only in sizing the treatment units but also in understanding the plant’s capacity. In the same time, it can assist in studying the future expansion works required for increased hydraulic and organic loadings. For this purpose, Tikrit WWTP was selected as a case study. The used model was validated by comparing the designed values of the plant and the modeling data. The verification of the obtained results from both hand calculations and the results of the program showed a good agreement. A significant difference in the volume of secondary treatment was obtained from design calculations, where the CAS without denitrification system was 9244 m3 (aerobic and secondary tanks), CAS with denitrification system was 11,324 m3 (anoxic, aerobic and secondary tanks) and for MBR system was 7468 m3 (anoxic, aerobic and immersed membrane tanks). From the obtained results point of view, it can be concluded that mathematical models can be considered as worthy tools to complement the established wastewater treatment plant design procedures.展开更多
The combined submerged biofilm ( SBF)-activated sludge (AS) process for treatment of municipal wastewater in a small city in China is described in this paper. The process exhibited high removal efficiencies for ca...The combined submerged biofilm ( SBF)-activated sludge (AS) process for treatment of municipal wastewater in a small city in China is described in this paper. The process exhibited high removal efficiencies for carbonaceous substances, nitrogen and phosphorus which mainly took place in the combined SBF-AS biore- actor. The SBF-AS bioreactor was divided into pre-anoxic, anaerobic, anoxic and aerobic zones from inlet to outlet, in which fixed biofilm carriers were packed. Excellent performance had been obtained under normal operating conditions in more than one year of operation in Dong' e municipal WWTP, Shandong province, with mean removal efficiencies of BOD5 93.4%, COD 88%, SS 92%, NH4 - N 82. 1%, TP 75% and TN 66.7%, and quite high effluent quality such as BOD5 6 to 10 rag/L, COD 20 to 40 rag/L, SS 5 to 10 rag/L, TN 10 to 20 rag/L, NH4 - N 4 to 8 mg/L and TP 0. 6 to 1.0 mg/L. The effluent was reused multi-purposely, such as toilet flushing, green belt watering and artificial lake pounding. Simultaneous nitrification and denitrification took place due to the DO gradient in biofilm in aerobic zone of the SBF-AS bioreactor, which made TN removal efficiency improved remarkably in system. Some activated sludge was returned from final clarifiers to the bioreactor for phosphorus removal. The process had the advantages of low investment and low operational/ maintenance (O/M) costs, low sludge yield and was preferably employed in small towns and cities.展开更多
Dewatered municipal sludge samples were collected from five municipal wastewater treatment plants (WWTPs) and one industrial WWTP in Guangzhou, China. A number of agricultural parameters and total metal concentratio...Dewatered municipal sludge samples were collected from five municipal wastewater treatment plants (WWTPs) and one industrial WWTP in Guangzhou, China. A number of agricultural parameters and total metal concentrations in the sludge were determined. Metal speciation was also studied. The results showed that sewage sludge had high organic carbon, and was rich in such nutrients as N and P. The concentrations of Mn, Zn, and Cu were the highest, followed by Ni, Pb, and Cr, Cd had the lowest concentration. In addition, the concentrations of the aforementioned heavy metals in the sludge samples were higher than those recorded in the background data for crop soils. With the exception of Cu and Cd from site S1, and Ni from sites S1, $2, and $5, all other metal concentrations conformed to permissible levels prescribed by the national application standard of acid soil in China (GB 18918--2002). The results of the BCR sequential extraction showed that the concentrations of Mn and Zn were predominant in acid-soluble/exchangeable and reducible fractions. Cu was principally distributed in oxidizable and residual fractions, whereas Cr was present in oxidizable and residual fractions, Pb was found in the state of residual fractions, and the distribution of Ni and Cd did not show significant characteristics.展开更多
Wastewater treatment is an important source of greenhouse gases(GHGs).Yet large uncertainties remain in the quantification of GHG emissions from municipal wastewater treatment plants(MWWTPs)in China.A high-resolution ...Wastewater treatment is an important source of greenhouse gases(GHGs).Yet large uncertainties remain in the quantification of GHG emissions from municipal wastewater treatment plants(MWWTPs)in China.A high-resolution and technology-specific emission inventory is still lacking to support mitigation strategies of MWWTPs.Here we develop a plant-level and technology-based MWWTP emission inventory for China covering 8703 plants and 19 treatment technology categories by compiling and harmonizing the most up-to-date facility-level databases.China's methane(CH_(4))and nitrous oxide(N_(2)O)emissions from MWWTPs in 2020 are estimated to be 150.6 Gg and 22.0 Gg,respectively,with the uncertainty range of-30%to 37%and-30%to 26%at 95%confidence interval.We find an emission inequality across cities,with the richest cities emitting two times more CH_(4)and N_(2)O per capita from municipal wastewater treatment than the poorest cities.The emitted CH_(4)and N_(2)O are dominated by Anaerobic/Anoxic/Oxic-,Sequencing Batch Reactor-,Oxidation Ditch-,and Anoxic/Oxic-based MWWTPs of less than 20 years old.Considering the relatively young age structure of China's MWWTPs,the committed emissions highlight the importance of reducing on-site GHG emissions by optimization of operating conditions and innovation management.The emission differences among our estimates,previous studies,and the Intergovernmental Panel on Climate Change guidelines are largely attributed to the uncertainties in emission factors,implying the urgent need for more plant-integrated measurements to improve the accuracy of emission accounting.展开更多
Wastewaters from the chemical industry are usually of high-strength and may contain minor inhibitory and recalcitrant organics that are at times not readily identifiable. This paper describes the experience of a biolo...Wastewaters from the chemical industry are usually of high-strength and may contain minor inhibitory and recalcitrant organics that are at times not readily identifiable. This paper describes the experience of a biological waste water treatment plant (WWTP) processing a COD concentration of 43000 mg·L^-1 wastewater from an oxochemical manufacturing plant. Stage improvements of the plant process by dilution of the inhibitory influent using other chemical wastewater streams resulting in a synergistic process effect, and removal of inhibitory organics by phase separation via acidification, effectively achieved process optimization producing a high quality effluent. In particular, the COD removal efficiency of granular sludge based anaerobic reactors increased from 56% to 90%. The final effluent COD decreased from 250mg·L^-1 to 50mg·L^-1, consistently meeting the COD concentration of 100 mg·L^-1 regulatory discharge limit. The success of the process enhancements supports the hypothesis that long-chain quaternary carboxylic acids act as substrate inhibitors in the biological process.展开更多
The question of wastewater treatment and control is reflected from a very specific viewpoint: the low priority given to accurate and useful measurements within wastewater treatment. The matter is discussed from four v...The question of wastewater treatment and control is reflected from a very specific viewpoint: the low priority given to accurate and useful measurements within wastewater treatment. The matter is discussed from four various perspectives, that may be labelled “Legal understanding”;“Needs for accurate measurement results already in the planning and design stage”;“The measurement problem and human behaviour”;“The understanding of the short term and long term dynamics and changes in pollution and flow loads on a wastewater treatment plant (WWTP)”. All these aspects bring about much improved needs for an accurate and frequent measurement scheme both for pollutants and flows entering a WWTP. The conclusion is stated as follows: A far more and well elaborated on-line measurement system at the plants would become a needed tool for improved water environment protection at lower costs.展开更多
Millions of tons of waste activated sludge(WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critica...Millions of tons of waste activated sludge(WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants(WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples(up to 9478 mg/L), followed by endogenous residues(6736 mg/L),extracellular polymeric substances(2088 mg/L), and intracellular storage products(464 mg/L)among others. Moreover, significant differences(p 〈 0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge.展开更多
Microplastics(MPs)and plasticizers,such as phthalate esters(PAEs),were frequently detected in municipal wastewater treatment plants(MWTP).Previous research mainly studied the removal of MPs and PAEs in wastewater.Howe...Microplastics(MPs)and plasticizers,such as phthalate esters(PAEs),were frequently detected in municipal wastewater treatment plants(MWTP).Previous research mainly studied the removal of MPs and PAEs in wastewater.However,the occurrence of MPs and PAEs in the sludge was generally ignored.To comprehensively investigate the occurrence and the migration behaviors of MPs and PAEs in MWTP,a series of representative parameters including the number,size,color,shape of MPs,and the concentrations of PAEs in wastewater and sludge were systematically investigated.In this study,the concentrations of MPs in the influent and effluent were 15.46±0.37 and 0.30±0.14 particles/L.The MP removal efficiency of 98.1%was achieved and about 73.8%of MPs were accumulated in the sludge in the MWTP.The numbers of MPs in the sludge before and after digestion were 4.40±0.14 and 0.31±0.01 particles/g(dry sludge),respectively.Fourier Transform Infrared Spectroscopy(ATR FT-IR)analysis showed that the main types of MPs were polyethylene terephthalate(PET),polypropylene(PP),polyethylene(PE),and polystyrene(PS).Six PAEs,including phthalate(DMP),diethyl phthalate(DEP),diisobutyl phthalate(DIBP),ortho dibutyl phthalate(DBP),butyl benzyl phthalate(BBP),and bis(2-ethyl)hexyl phthalate(DEHP),were detected in the MWTP.The concentrations of total PAEs(ΣPAEs)in the influent and effluent were 76.66 and 6.28μg/L,respectively.The concentrations ofΣPAEs in the sludge before and after digestion were 152.64 and 31.70μg/g,respectively.In the process of thermal hydrolysis,the number and size of MPs decreased accompanied by the increase of the plasticizer concentration.展开更多
基金supported by the Key Project of Chinese Academy of Sciences (No. KZCX2-YW-420)the National Basic Research Program (973) of China (No.2009CB421606)the National Natural Science Foundation of China (No. 20621703)
文摘Concentrations of polychlorinated biphenyls (PCBs) have been measured in sewage sludge samples from 8 urban wastewater treatment plants in Beijing, China. The PCB congeners were analyzed by isotope dilution high resolution gas chromatography/high resolution mass spectrometry method. The concentration of PCBs ranged from 65.6 to 157 ng/g dry weight (dw), with a mean value of 101 ng/g dw. The dioxin-like PCB WHO-TEQs (World Health Organization-Toxic Equivalents) of the sludge were lower than 1 pg /g dw. Consequently, all the concentrations of PCBs in sludge samples were below the upper limit for land application according to the Chinese legislation law for agriculture use. The PCB homologue profiles in sludge samples were dominated by tri-CBs and tetra- CBs. Similar distributions have been found in one of the Chinese PCB commercial products. The patterns of dioxin-like and indicator congeners observed in this study were quite similar in all samples. The predominant congener for dioxin-like and indicator PCBs were PCB-118 and PCB-28, respectively, while PCB-126 had the highest TEQ value.
基金supported by the Key Projects in National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period (No.2006BAC19B01-02)the Mega-projects of Science Research for Water (No.2008ZX07313-3)the Program of Introducing Talents of Discipline to Universities
文摘We investigated the communities of ammonia-oxidizing bacteria (AOB) in activated sludge collected from eight wastewater treatment systems using polymerase chain reaction (PCR) followed by terminal restriction fragment length polymorphism (T-RFLP), cloning, and sequencing of the α-subunit of the ammonia monooxygenase gene (amoA). The T-RFLP fingerprint analyses showed that different wastewater treatment systems harbored distinct AOB communities. However, there was no remarkable difference among the AOB T- RFLP profiles from different parts of the same system. The T-RFLP fingerprints showed that a full-scale wastewater treatment plant (WWTP) contained a larger number of dominant AOB species than a pilot-scale reactor. The source of influent affected the AOB community, and the WWTPs treating domestic wastewater contained a higher AOB diversity than those receiving mixed domestic and industrial wastewater. However, the AOB community structure was little affected by the treatment process in this study. Phylogenetic analysis of the cloned amoA genes clearly indicated that all the dominant AOB in the systems was closely related to Nitrosomonas spp. not to Nitrosospira spp. Members of the Nitrosomonas oligotropha and Nitrosomonas communis clusters were found in all samples, while members of Nitrosomonas europaea cluster occurred in some systems.
文摘A newly developed model for the optimum municipal wastewater treatment plant(MWTP) design is presented. Through introducing the interval variables, the model attempts to consider the effects of uncertainties caused by the fluctuation of the wastewater quality and quantity during the design of MWTP. The model solution procedure is illustrated in detail, and a numerical example is given to verify the feasibility and advantage of the model. Furthermore, the possibility of the model application is briefly outlined.
文摘Microplastics, plastic pieces of ≤5 mm in size, are ubiquitous in ther environment and can be found in both terrestrial and aquatic ecosystems. This manuscript reviews the literature on the fate of microplastics in wastewater treatment and briefly highlights novel developments in the removal of microplastics from aqueous systems.
文摘Mathematical models and simulation are considered a powerful tool in engineering practice. Those tools are becoming increasingly used for the improvement of wastewater treatment plants design because the conceptual design is complex and ill-defined. In this paper, three alternatives: 1) complete mix activated sludge without nitrogen removal (CAS);2) complete mix activated sludge with nitrogen removal (CAS-N) and;3) membrane bioreactor (MBR) processes were designed into two steps: first concept design to calculate the size of process units, then second implement modeling and simulation to improve the accuracy of the conceptual design. In brief, the treatment process design has been verified by using the activated sludge model No. 1 (ASM1) in GPS-X (v.7) simulation software. This application helps not only in sizing the treatment units but also in understanding the plant’s capacity. In the same time, it can assist in studying the future expansion works required for increased hydraulic and organic loadings. For this purpose, Tikrit WWTP was selected as a case study. The used model was validated by comparing the designed values of the plant and the modeling data. The verification of the obtained results from both hand calculations and the results of the program showed a good agreement. A significant difference in the volume of secondary treatment was obtained from design calculations, where the CAS without denitrification system was 9244 m3 (aerobic and secondary tanks), CAS with denitrification system was 11,324 m3 (anoxic, aerobic and secondary tanks) and for MBR system was 7468 m3 (anoxic, aerobic and immersed membrane tanks). From the obtained results point of view, it can be concluded that mathematical models can be considered as worthy tools to complement the established wastewater treatment plant design procedures.
文摘The combined submerged biofilm ( SBF)-activated sludge (AS) process for treatment of municipal wastewater in a small city in China is described in this paper. The process exhibited high removal efficiencies for carbonaceous substances, nitrogen and phosphorus which mainly took place in the combined SBF-AS biore- actor. The SBF-AS bioreactor was divided into pre-anoxic, anaerobic, anoxic and aerobic zones from inlet to outlet, in which fixed biofilm carriers were packed. Excellent performance had been obtained under normal operating conditions in more than one year of operation in Dong' e municipal WWTP, Shandong province, with mean removal efficiencies of BOD5 93.4%, COD 88%, SS 92%, NH4 - N 82. 1%, TP 75% and TN 66.7%, and quite high effluent quality such as BOD5 6 to 10 rag/L, COD 20 to 40 rag/L, SS 5 to 10 rag/L, TN 10 to 20 rag/L, NH4 - N 4 to 8 mg/L and TP 0. 6 to 1.0 mg/L. The effluent was reused multi-purposely, such as toilet flushing, green belt watering and artificial lake pounding. Simultaneous nitrification and denitrification took place due to the DO gradient in biofilm in aerobic zone of the SBF-AS bioreactor, which made TN removal efficiency improved remarkably in system. Some activated sludge was returned from final clarifiers to the bioreactor for phosphorus removal. The process had the advantages of low investment and low operational/ maintenance (O/M) costs, low sludge yield and was preferably employed in small towns and cities.
基金Project(51308132) supported by the National Natural Science Foundation of ChinaProject(2012B050300023) supported by the Scientific and Technological Planning Project of Guangdong Province,China+1 种基金Project(LYM11059) supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong,ChinaProjects(2011B090400161,2011B090400144) supported by the Cooperation Foundation for Industry,University and Research Institute,Guangdong Province and Ministry of Education of China
文摘Dewatered municipal sludge samples were collected from five municipal wastewater treatment plants (WWTPs) and one industrial WWTP in Guangzhou, China. A number of agricultural parameters and total metal concentrations in the sludge were determined. Metal speciation was also studied. The results showed that sewage sludge had high organic carbon, and was rich in such nutrients as N and P. The concentrations of Mn, Zn, and Cu were the highest, followed by Ni, Pb, and Cr, Cd had the lowest concentration. In addition, the concentrations of the aforementioned heavy metals in the sludge samples were higher than those recorded in the background data for crop soils. With the exception of Cu and Cd from site S1, and Ni from sites S1, $2, and $5, all other metal concentrations conformed to permissible levels prescribed by the national application standard of acid soil in China (GB 18918--2002). The results of the BCR sequential extraction showed that the concentrations of Mn and Zn were predominant in acid-soluble/exchangeable and reducible fractions. Cu was principally distributed in oxidizable and residual fractions, whereas Cr was present in oxidizable and residual fractions, Pb was found in the state of residual fractions, and the distribution of Ni and Cd did not show significant characteristics.
基金supported by the Shenzhen Science and Technology Innovation Commission(No.RCBS20210609103731062,No.WDZC20220810110301001)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110887)H.L.acknowledge additional support from the Shenzhen Overseas High-Level Talent Project.
文摘Wastewater treatment is an important source of greenhouse gases(GHGs).Yet large uncertainties remain in the quantification of GHG emissions from municipal wastewater treatment plants(MWWTPs)in China.A high-resolution and technology-specific emission inventory is still lacking to support mitigation strategies of MWWTPs.Here we develop a plant-level and technology-based MWWTP emission inventory for China covering 8703 plants and 19 treatment technology categories by compiling and harmonizing the most up-to-date facility-level databases.China's methane(CH_(4))and nitrous oxide(N_(2)O)emissions from MWWTPs in 2020 are estimated to be 150.6 Gg and 22.0 Gg,respectively,with the uncertainty range of-30%to 37%and-30%to 26%at 95%confidence interval.We find an emission inequality across cities,with the richest cities emitting two times more CH_(4)and N_(2)O per capita from municipal wastewater treatment than the poorest cities.The emitted CH_(4)and N_(2)O are dominated by Anaerobic/Anoxic/Oxic-,Sequencing Batch Reactor-,Oxidation Ditch-,and Anoxic/Oxic-based MWWTPs of less than 20 years old.Considering the relatively young age structure of China's MWWTPs,the committed emissions highlight the importance of reducing on-site GHG emissions by optimization of operating conditions and innovation management.The emission differences among our estimates,previous studies,and the Intergovernmental Panel on Climate Change guidelines are largely attributed to the uncertainties in emission factors,implying the urgent need for more plant-integrated measurements to improve the accuracy of emission accounting.
文摘Wastewaters from the chemical industry are usually of high-strength and may contain minor inhibitory and recalcitrant organics that are at times not readily identifiable. This paper describes the experience of a biological waste water treatment plant (WWTP) processing a COD concentration of 43000 mg·L^-1 wastewater from an oxochemical manufacturing plant. Stage improvements of the plant process by dilution of the inhibitory influent using other chemical wastewater streams resulting in a synergistic process effect, and removal of inhibitory organics by phase separation via acidification, effectively achieved process optimization producing a high quality effluent. In particular, the COD removal efficiency of granular sludge based anaerobic reactors increased from 56% to 90%. The final effluent COD decreased from 250mg·L^-1 to 50mg·L^-1, consistently meeting the COD concentration of 100 mg·L^-1 regulatory discharge limit. The success of the process enhancements supports the hypothesis that long-chain quaternary carboxylic acids act as substrate inhibitors in the biological process.
文摘The question of wastewater treatment and control is reflected from a very specific viewpoint: the low priority given to accurate and useful measurements within wastewater treatment. The matter is discussed from four various perspectives, that may be labelled “Legal understanding”;“Needs for accurate measurement results already in the planning and design stage”;“The measurement problem and human behaviour”;“The understanding of the short term and long term dynamics and changes in pollution and flow loads on a wastewater treatment plant (WWTP)”. All these aspects bring about much improved needs for an accurate and frequent measurement scheme both for pollutants and flows entering a WWTP. The conclusion is stated as follows: A far more and well elaborated on-line measurement system at the plants would become a needed tool for improved water environment protection at lower costs.
基金supported by the National Natural Science Foundation of China(Nos.51408589 and 51138009)State Key Joint Laboratory of Environment Simulation and Pollution Control of China(Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,No.14Z03ESPCR)Youth Innovation Promotion Association of the Chinese Academy of Sciences
文摘Millions of tons of waste activated sludge(WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants(WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples(up to 9478 mg/L), followed by endogenous residues(6736 mg/L),extracellular polymeric substances(2088 mg/L), and intracellular storage products(464 mg/L)among others. Moreover, significant differences(p 〈 0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge.
基金supported by the National Natural Science Foundation of China(Nos.42177051 and 52170021).
文摘Microplastics(MPs)and plasticizers,such as phthalate esters(PAEs),were frequently detected in municipal wastewater treatment plants(MWTP).Previous research mainly studied the removal of MPs and PAEs in wastewater.However,the occurrence of MPs and PAEs in the sludge was generally ignored.To comprehensively investigate the occurrence and the migration behaviors of MPs and PAEs in MWTP,a series of representative parameters including the number,size,color,shape of MPs,and the concentrations of PAEs in wastewater and sludge were systematically investigated.In this study,the concentrations of MPs in the influent and effluent were 15.46±0.37 and 0.30±0.14 particles/L.The MP removal efficiency of 98.1%was achieved and about 73.8%of MPs were accumulated in the sludge in the MWTP.The numbers of MPs in the sludge before and after digestion were 4.40±0.14 and 0.31±0.01 particles/g(dry sludge),respectively.Fourier Transform Infrared Spectroscopy(ATR FT-IR)analysis showed that the main types of MPs were polyethylene terephthalate(PET),polypropylene(PP),polyethylene(PE),and polystyrene(PS).Six PAEs,including phthalate(DMP),diethyl phthalate(DEP),diisobutyl phthalate(DIBP),ortho dibutyl phthalate(DBP),butyl benzyl phthalate(BBP),and bis(2-ethyl)hexyl phthalate(DEHP),were detected in the MWTP.The concentrations of total PAEs(ΣPAEs)in the influent and effluent were 76.66 and 6.28μg/L,respectively.The concentrations ofΣPAEs in the sludge before and after digestion were 152.64 and 31.70μg/g,respectively.In the process of thermal hydrolysis,the number and size of MPs decreased accompanied by the increase of the plasticizer concentration.