In this study,the main properties of the hydraulic jump in an asymmetric trapezoidal flume are analyzed experimentally,including the so-called sequent depths,characteristic lengths,and efficiency.In particular,an asym...In this study,the main properties of the hydraulic jump in an asymmetric trapezoidal flume are analyzed experimentally,including the so-called sequent depths,characteristic lengths,and efficiency.In particular,an asymmetric trapezoidal flume with a length of 7 m and a width of 0.304 m is considered,with the bottom of the flume transversely inclined at an angle of m=0.296 and vertical lateral sides.The corresponding inflow Froude number is allowed to range in the interval(1.40<F1<6.11).The properties of this jump are compared to those of hydraulic jumps in channels with other types of cross-sections.A relationship for calculating hydraulic jump efficiency is proposed for the considered flume.For F1>5,the hydraulic jump is found to be more effective than that occurring in triangular and symmetric trapezoidal channels.Also,when■mes>8 and■>5,the hydraulic jump in the asymmetrical trapezoidal channel downstream of a parallelogram sluice gate is completely formed as opposed to the situation where a triangular sluice is considered.展开更多
The turbulent flow discharging under a sluice gate is one kind of typical flows with complicated boundaries in hydraulic and hydroelectric engineering, and the characteristics of its flow field and flow evolution are ...The turbulent flow discharging under a sluice gate is one kind of typical flows with complicated boundaries in hydraulic and hydroelectric engineering, and the characteristics of its flow field and flow evolution are important in engineering hydraulics. Although there were many studies in this regard, which mainly focus on the discharge capacity, the local scour and the mean flow field, some issues remain to be further investigated, for example, the variation of the mechanical energy during the scouring process, and the adjustment of the unsteady turbulent flow after the local scour with the downstream steady uniform flow. In this paper, the turbulent flow behind a sluice gate is divided into a rapidly varied flow region and a gradually varied flow region, and the above problems are investigated by theoretical analysis and numerical simulation. The main conclusions are as follows:(1) In the discharging process of the turbulent flow under a sluice gate, the river bed would be scoured continuously and the water–air interface is adjusted accordingly, which leads to a decrease of the mechanical energy of the total flow in the rapidly varied flow region, and the mechanical energy loss would also decrease with the increase of the time, yet the variation of the flow discharge under the sluice gate is very small.(2) In the link between the rapidly varied flow and the uniform flow downstream, the mean wall shear stress and the coefficient for the mechanical energy loss would decrease in the longitudinal direction, the decay of the turbulent kinetic energy near the free surface is much more significant than that near the bed in the longitudinal direction, and the mean turbulent kinetic energy in the section would decrease in the longitudinal direction and the decreasing rate is smaller than that of the mean wall shear stress.展开更多
文摘In this study,the main properties of the hydraulic jump in an asymmetric trapezoidal flume are analyzed experimentally,including the so-called sequent depths,characteristic lengths,and efficiency.In particular,an asymmetric trapezoidal flume with a length of 7 m and a width of 0.304 m is considered,with the bottom of the flume transversely inclined at an angle of m=0.296 and vertical lateral sides.The corresponding inflow Froude number is allowed to range in the interval(1.40<F1<6.11).The properties of this jump are compared to those of hydraulic jumps in channels with other types of cross-sections.A relationship for calculating hydraulic jump efficiency is proposed for the considered flume.For F1>5,the hydraulic jump is found to be more effective than that occurring in triangular and symmetric trapezoidal channels.Also,when■mes>8 and■>5,the hydraulic jump in the asymmetrical trapezoidal channel downstream of a parallelogram sluice gate is completely formed as opposed to the situation where a triangular sluice is considered.
基金Project supported by the Governmental Public Industry Research Special Funds for Projects(Grant No.201101005)
文摘The turbulent flow discharging under a sluice gate is one kind of typical flows with complicated boundaries in hydraulic and hydroelectric engineering, and the characteristics of its flow field and flow evolution are important in engineering hydraulics. Although there were many studies in this regard, which mainly focus on the discharge capacity, the local scour and the mean flow field, some issues remain to be further investigated, for example, the variation of the mechanical energy during the scouring process, and the adjustment of the unsteady turbulent flow after the local scour with the downstream steady uniform flow. In this paper, the turbulent flow behind a sluice gate is divided into a rapidly varied flow region and a gradually varied flow region, and the above problems are investigated by theoretical analysis and numerical simulation. The main conclusions are as follows:(1) In the discharging process of the turbulent flow under a sluice gate, the river bed would be scoured continuously and the water–air interface is adjusted accordingly, which leads to a decrease of the mechanical energy of the total flow in the rapidly varied flow region, and the mechanical energy loss would also decrease with the increase of the time, yet the variation of the flow discharge under the sluice gate is very small.(2) In the link between the rapidly varied flow and the uniform flow downstream, the mean wall shear stress and the coefficient for the mechanical energy loss would decrease in the longitudinal direction, the decay of the turbulent kinetic energy near the free surface is much more significant than that near the bed in the longitudinal direction, and the mean turbulent kinetic energy in the section would decrease in the longitudinal direction and the decreasing rate is smaller than that of the mean wall shear stress.